
PONTIFÍCIA UNIVERSIDADE CATÓLICA DE MINAS GERAIS

Programa de Pós-graduação em Engenharia Elétrica

Alysson Ribeiro da Silva

Creative Agent Reasoning through Adaptive Neural Networks

Belo Horizonte

2017

Alysson Ribeiro da Silva

Creative Agent Reasoning through Adaptive Neural Networks

Thesis presented to the Programa de Pós-

graduação em Engenharia Elétrica from the Pon-

tifícia Universidade Católica de Minas Gerais,

as a partial requirement in order to earn a Master

of Science degree in Electrical Engineering.

Supervisor: Luís Fabrício Wanderley Góes

Co-supervisor: Carlos Augusto Paiva da Silva Mar-

tins

Belo Horizonte

2017

FICHA CATALOGRÁFICA

Elaborada pela Biblioteca da Pontifícia Universidade Católica de Minas Gerais

Silva, Alysson Ribeiro da

S586c Creative agent reasoning through adaptive neural networks / Alysson Ribeiro

da Silva. Belo Horizonte, 2017.

 251 f. : il.

 Orientador: Luís Fabrício Wanderley Góes

 Dissertação (Mestrado) – Pontifícia Universidade Católica de Minas Gerais.

Programa de Pós-Graduação em Engenharia Elétrica

 1. Redes neurais (Computação). 2. Pensamento criativo. 3. Algorítmos

computacionais. 4. Inteligência artificial. 5. Jogos eletrônicos. I. Góes, Luís

Fabrício Wanderley. II. Pontifícia Universidade Católica de Minas Gerais.

Programa de Pós-Graduação em Engenharia Elétrica. III. Título.

 CDU: 681.3.091

Alysson Ribeiro da Silva

Creative Agent Reasoning through Adaptive Neural Networks

Thesis presented to the Programa de Pós-

graduação em Engenharia Elétrica from the Pon-

tifícia Universidade Católica de Minas Gerais,

as a partial requirement in order to earn a Master

of Science degree in Electrical Engineering.

Luís Fabrício Wanderley Góes, Ph.D. - PUC Minas (Supervisor)

D.r Felipe Domingos da Cunha - PUC Minas

D.r Luiz Chaimowicz - UFMG

Belo Horizonte, 17 November 2017

I would like to dedicate this work in memory of Eva Maria da Silva since she was a very

important person in my life. I also would like to dedicate this work to my mom and dad

since both take care of me until to this date, providing the necessary environment,

incentive, emotional support and love that allows me to pursue my dreams visioning a

better world. I would like to dedicate this work to my university colleagues that were

unable to graduate due to social economical problems. I would like to dedicate this work to

Camila Guedes Silveira since she was at my side at every moment during last years. In

addition, I also dedicate this work to Carlos Augusto De Paiva Silva Martins, Luís

Fabrício Wanderley Góes, Alexei Manso Correa Machado and Max do Val Machado,

professors at PUC Minas, since they provided me valuable advices and helped me during

my life. In special, I would like to dedicate this work to any who not blesses with basic

living conditions, any who, that unfortunately, is obligated to interact with human

corruption, any who, that unfortunately, needs to deal with jealous, envy, angry and lies

from others, and any who that does not had the opportunity to conduct research in any

field of study, since those conditions, among others, could possibly deprive the world from

great scientists, and more important, great human beings.

ACKNOWLEDGEMENTS

I acknowledge Alessandro Ribeiro da Silva for helping me in understand the mine-

field navigation simulation system and for introducing me the Java Native Interface, since

it helped me in replicating the original Adaptive Resonance Associative Map research

conducted by A. H. Tan. and in integrating Java with c++/CUDA. In addition, I ac-

knowledge Celso Renato França França for suggesting that the Bayesian surprise model

could be used in order to compute the novelty of an idea. I also acknowledge, Luís Fabrício

Wanderley Góes for providing a Tesla Graphics Processing Unit to conduct experiments

and for suggesting that the Honing Theory would possibly be able to generate creative

ideas. Furthermore, I acknowledge Camila Guedes Silveira for helping me, during moments

of emotional need, on the development of the time complexity analysis for all deployed

systems. Finally, I acknowledge FAPEMIG and CAPES for the granted scholarships

although both did not provided personal income in terms of salary.

“The original question, "Can machines think?"

I believe to be too meaningless to deserve discussion.”

Alan Mathison Turing (TURING, 1995)

ABSTRACT

In recent years, neural networks have been used successfully to control agents. Nevertheless,

little effort is dedicated on the deployment of creative behavior on them. In that context,

our main objective, divided into three parts, is to propose and develop methods to deploy

human creativity into an agent’s reasoning process. The first part envisioned the creation of

a computational model of The Honing Theory of creativity, that has never been attempted

before, which led us to the formulation of a computational model of it. This model was

deployed in a system we called HoningStone to generate creative card combos for a

digital collectible card game called HearthStone. Our results showed that HoningStone

could generate card combos that are more creative than the ones generated by a greedy

randomized algorithm driven by the same creativity metric. The second part envisioned to

enable an agent to build an emergent solution, not only to build combos but to generate

full strategies which at first are just efficient, not creative. In this new scenario, the

search space is even larger due to the number of cards and actions combinations and

also due to randomness. We then proposed an Adaptive Neural Network for emergent

agent development and control using semantic information. This proposal was deployed

on Hearthbot, an autonomous agent we created that plays Hearthstone. Results show that

it achieved an average win rate performance of 80% against the Monte Carlo Tree Search.

The last part envisioned to make HearthBot also creative and more efficient in terms of

win rate performance, where the Honing Theory was fit within the natural learning process

of the Adaptive Resonance Theory. It led us to the proposal and creation of the Honing

Adaptive Resonance Process. It is composed of Adaptive Neural Networks we design to

handle creative thinking. Results show that the creative Hearthbot agents surpassed the

performance of the original, and it achieved a win rate above 90%, on average, against the

Monte Carlo Tree Search and above 60%, on average, when playing against the handcrafted

algorithm based on greedy local decisions.

Keywords: Adaptive Neural Network. Creative Thinking. The Honing Theory. Adaptive

Resonance Theory. HearthStone.

RESUMO

Nos últimos anos, as redes neurais foram utilizadas com sucesso para controlar os agentes.

No entanto, pouco esforço é dedicado na implantação de comportamento criativo nos

mesmos. O principal objetivo desta pesquisa, dividido em três partes, é propor e implantar

métodos capazes de implantar a criatividade humana no processo de raciocínio de agentes.

A primeira parte desta pesquisa visa a criação de um modelo computacional da Teoria do

Aprimoramento, que nunca foi tentado antes, o que nos levou à formulação de um modelo

computacional capaz de representa-la. Este modelo foi implantado em um sistema que

chamamos HoningStone para gerar combos de cartas criativos para um jogo digital de

cartas colecionáveis chamado HearthStone. Nossos resultados mostraram que HoningStone

foi capaz de gerar combos de cartas que são mais criativos do que os gerados por um

algoritmo guloso conduzido pela mesma métrica de criatividade. A segunda parte visa

permitir que um agente contrua uma solução emergente, não só para criar combos, mas

também para gerar estratégias completas que em primeiro lugar são apenas eficientes,

não criativas. Neste novo cenário, o espaço de busca é ainda maior devido ao número de

combinações de cartas e ações e também devido à aleatoriedade. Em seguida, propusemos

uma Rede Neural Adaptativa para desenvolvimento e controle de agentes emergentes

usando informações semânticas. Esta proposta foi implantada no Hearthbot, um agente

autônomo que criamos que é capaz de jogar Hearthstone. Os resultados mostram que

o mesmo alcançou um desempenho médio da taxa de vitórias perto de 80% contra o

Monte Carlo Tree Search. Na última parte, esta pesquisa visa tornar o HearthBot também

criativo e mais eficiente em termos de desempenho da taxa de vitória, onde a Teoria

do Aprimoramento foi incorporada no processo de aprendizagem natural da Teoria da

Ressonância Adaptativa. Isso nos levou à proposta e criação do Processo de Aprimoramento

de Ressonância Adaptativa. É composto de Redes Neurais Adaptativas que projetamos

para lidar com o pensamento criativo. Tal solução foi implantada em agentes que chamamos

de HearthBots Criativos. Os resultados mostram que o desempenho dos mesmos superaram

suas versões não criativas, e alcançaram uma taxa de vitórias acima de 90%, em média,

contra o Monte Carlo Tree Search e acima de 60%, em média, quando jogando contra uma

heurística gulosa baseado em construções aleatorias.

Palavras-chave: Redes Neurais Adaptativas. Pensamento Criativo. Teoria do Aprimora-

mento. Teoria da Ressonância Adaptativa. HearthStone.

LIST OF FIGURES

Figure 1 – Creative Thinking conceptual space and idea representation. 34

Figure 2 – Time flow in a Solitaire game with discrete decision steps. 58

Figure 3 – Agent control process from data acquisition to decision making. 60

Figure 4 – Simplified Partially Observable Markov Decision Process example with

7 states in 𝑆 as blue circles and 2 reward outcomes in yellow. 62

Figure 5 – Adaptive Resonance Associative Map architecture. 66

Figure 6 – The Honing Theory conceptual space. 71

Figure 7 – The Honing Theory process as a neural clique expansion. 72

Figure 8 – Bayesian Surprise concept as the distance from a sample’s centroid

considering dispersion. 74

Figure 9 – Adaptive Neural Networks and FALCON interaction. 77

Figure 10 – Honing Theory proposed process with analytic and associative phases. 90

Figure 11 – Semantic networks representing a chair and a prosthetic leg. 91

Figure 12 – Honing Network super node. 91

Figure 13 – Honing Network interconnected super nodes. 92

Figure 14 – Direct relation between a chair and a prosthetic leg. 93

Figure 15 – The Honing Adaptive Resonance Process. 96

Figure 16 – The HARP physical domain as a cyclic process. 97

Figure 17 – Abstraction levels. 98

Figure 18 – Expectation ART neuron with its memory links and surprise vectors. . 102

Figure 19 – Action spectrum coding model. 107

Figure 20 – Unstructured area multi-channel Adaptive Neural Network scheme. . . 113

Figure 21 – Unstructured area multi-channel Adaptive Neural Network area activa-

tion example. 115

Figure 22 – Hearthstone battlefield from Blizzard’s Entertainment all rights reserved

(BLIZZARD, 2018). 123

Figure 23 – Micro model for the Wildhammer Keeper card. 125

Figure 24 – Macro model for three Hearthstone cards. 126

Figure 25 – Envenom card from Hearthstone with its description text called Double

your weapon’s Attack this turn. 128

Figure 26 – Hearthstone HoningNetwork model. 136

Figure 27 – HearthBot architecture for the proximity ANN. 139

Figure 28 – Component diagram of HearthBot as a Metastone Behavior interface. . 139

Figure 29 – Field architecture for T-HearthBot. 142

Figure 30 – Field architecture for CTH-HearthBot. 149

Figure 31 – Field architecture for CTUH-HearthBot. 151

Figure 32 – Feature extraction example, considering vision, for a minion card on a

Hearthstone battlefield. 199

Figure 33 – Adaptive Resonance Theory scheme. 211

Figure 34 – Adaptive Resonance Theory symbols as signals represented by a complex

network of interconnected neurons. 212

Figure 35 – Adaptive Resonance Theory signals organized inside representative fields.213

Figure 36 – Adaptive Resonance Theory semantics as retrieved memories. 214

Figure 37 – Frame example storing information about the sun and the sea. 215

LIST OF TABLES

Table 1 – Proposed behavioral model for Hearthstone with behaviors types and its

respective goals. 130

Table 2 – Deck selection for HearthBots evaluation. 160

Table 3 – Deck choices and the respective strategies that serves as unobserved data160

Table 4 – Parameters choices for each test from training and exploiting experiments.166

Table 5 – General parameters for all T-HearthBot variants 176

Table 6 – Field parameters for all T-HearthBots, HARP and UAM proposals . . . 176

Table 7 – Neuron activation parameters for all T-HearthBots 177

Table 8 – Selected heroes with the respective play style and enemy for all T-

HearthBots experiments. 221

LIST OF CHARTS

Chart 1 – HoningStone for combo generation. 156

Chart 2 – HoningStone measured surprise for combo generation. 157

Chart 3 – HoningStone measured efficiency for combo generation. 158

Chart 4 – Winrate coefficient of variation for Metastone. 161

Chart 5 – Attribute behavior coefficient of variation for Metastone. 162

Chart 6 – Selected decks against Metastone Monte Carlo Tree Search. 163

Chart 7 – Selected decks against Metastone Board Control Greedy. 164

Chart 8 – HearthBot win rate against all the decks of the experiments from the

training experiment. 167

Chart 9 – HearthBot win rate against unknown decks. 169

Chart 10 – Neurons usage represented by the Y-axis as the total amount of the

ANN capacity. 170

Chart 11 – Neuron growth geometric tendency for each trained deck. 170

Chart 12 – Winrate convergence for Face Hunter versus Metastone MCTS playing

with Secret Paladin. 178

Chart 13 – Behavior statistics for Face Hunter versus Metastone MCTS playing

with Secret Paladin. 179

Chart 14 – Winrate convergence for Control Warrior versus Metastone BC-Greedy

playing with Aggro Shaman. 180

Chart 15 – Behavior statistics for Control Warrior versus Metastone BC-Greedy

playing with Aggro Shaman. 180

Chart 16 – Winrate convergence for Face Hunter versus Metastone MCTS playing

with Secret Paladin. 181

Chart 17 – Behavior statistics for Face Hunter versus Metastone BC-Greedy playing

with Secret Paladin. 182

Chart 18 – Winrate convergence for Control Warrior versus Metastone BC-Greedy

playing with Aggro Shaman. 183

Chart 19 – Behavior statistics for Control Warrior versus Metastone BC-Greedy

playing with Aggro Shaman. 183

Chart 20 – Shaman vs Paladin cognitive code growth divergence, between a behav-

ioral HARP and an ART system, when exploring the search space. . . . 186

Chart 21 – Shaman vs Paladin cognitive code growth divergence, between a spectrum

HARP and an ART system, when exploring the search space. 186

Chart 22 – Win rate for CTUH-HearthBot playing with all heroes against the Monte

Carlo Tree Search. 188

Chart 23 – Win rate for CTUH-HearthBot playing with all heroes against the

BC-Greedy. 189

Chart 24 – CTUH-HearthBot versus MCTS win rate when performing against un-

known decks. 190

Chart 25 – CTUH-HearthBot versus Board Control Greedy win rate tendency when

performing against unknown decks. 191

Chart 26 – Hunter vs Paladin cognitive code growth divergence. 192

Chart 27 – Shaman win rate analysis playing against Monte Carlo Tree Search. . . 217

Chart 28 – Mage win rate analysis playing against Monte Carlo Tree Search. 218

Chart 29 – Hunter win rate analysis playing against Monte Carlo Tree Search. . . . 219

Chart 30 – Warrior win rate analysis playing against the Board Control Greedy. . . 219

Chart 31 – Druid win rate analysis playing against the Board Control Greedy. . . . 220

Chart 32 – Rogue win rate analysis playing against the Board Control Greedy. . . . 221

Chart 33 – Winrate convergence for Aggro Shaman versus Metastone MCTS playing

with Secret Paladin. 222

Chart 34 – Behavior statistics for Aggro Shaman versus Metastone BC-Greedy

playing with Secret Paladin. 223

Chart 35 – Winrate convergence for Tempo Mage versus Metastone MCTS playing

with Secret Paladin. 223

Chart 36 – Behavior statistics for Tempo Mage versus Metastone BC-Greedy playing

with Secret Paladin. 224

Chart 37 – Winrate convergence for Face Hunter versus Metastone MCTS playing

with Secret Paladin. 225

Chart 38 – Behavior statistics for Face Hunter versus Metastone MCTS playing

with Secret Paladin. 226

Chart 39 – Winrate convergence for Malygos Rogue versus Metastone BC-Greedy

playing with Aggro Shaman. 227

Chart 40 – Behavior statistics for Malygos Rogue versus Metastone BC-Greedy

playing with Aggro Shaman. 228

Chart 41 – Winrate convergence for Midrange Druid versus Metastone BC-Greedy

playing with Control Priest. 228

Chart 42 – Behavior statistics for Midrange Druid versus Metastone BC-Greedy

playing with Control Priest. 229

Chart 43 – Winrate convergence for Control Warrior versus Metastone BC-Greedy

playing with Aggro Shaman. 230

Chart 44 – Behavior statistics for Control Warrior versus Metastone BC-Greedy

playing with Aggro Shaman. 231

Chart 45 – Winrate convergence for Aggro Shaman versus Metastone MCTS playing

with Secret Paladin. 232

Chart 46 – Behavior statistics for Aggro Shaman versus Metastone BC-Greedy

playing with Secret Paladin. 232

Chart 47 – Winrate convergence for Tempo Mage versus Metastone MCTS playing

with Secret Paladin. 233

Chart 48 – Behavior statistics for Tempo Mage versus Metastone MCTS playing

with Secret Paladin. 234

Chart 49 – Winrate convergence for Face Hunter versus Metastone MCTS playing

with Secret Paladin. 235

Chart 50 – Behavior statistics for Face Hunter versus Metastone BC-Greedy playing

with Secret Paladin. 235

Chart 51 – Winrate convergence for Malygs Rogue versus Metastone BC-Greedy

playing with Aggro Shaman. 236

Chart 52 – Behavior statistics for Malygos Rogue versus Metastone BC-Greedy

playing with Aggro Shaman. 237

Chart 53 – Winrate convergence for Midrange Druid versus Metastone BC-Greedy

playing with Control Priest. 238

Chart 54 – Behavior statistics for Midrange Druid versus Metastone BC-Greedy

playing with Control Priest. 239

Chart 55 – Winrate convergence for Control Warrior versus Metastone BC-Greedy

playing with Aggro Shaman. 239

Chart 56 – Behavior statistics for Control Warrior versus Metastone BC-Greedy

playing with Aggro Shaman. 240

Chart 57 – Simulation execution time for the behavioral HearthBots. 242

Chart 58 – Simulation execution time for the spectrum HearthBots. 243

Chart 59 – Simulation execution time for HearthBot. 247

Chart 60 – Bayesian surprise behavior for a set of 800 observations. 250

Chart 61 – Bayesian surprise behavior for a set of 800 observations without using a

scaling term. 251

ALGORITHMS LIST

Algorithm 1 – Greedy Randomized Construction pseudo code for associative phase

clique activation . 94

Algorithm 2 – Honing algorithm based on a GRASP procedure 96

Algorithm 3 – Contextual focus as a decision policy algorithm. 100

Algorithm 4 – HearthBot as a Metastone Behavior interface 140

Algorithm 5 – Reactive FALCON algorithm for T-HearthBot 143

Algorithm 6 – Reactive FALCON learning algorithm for T-HearthBot 145

Algorithm 7 – FALCON Q-learning sensory to action step 146

Algorithm 8 – FALCON Q-learning Action Inhibition 147

Algorithm 9 – FALCON Q-learning learning . 148

Algorithm 10 – FALCON Q-learning sensory to action step for the HARP process . 150

LIST OF ABBREVIATIONS AND ACRONYMS

ANN Adaptive Neural Network

ARAM Adaptive Resonance Associative Map

ART Adaptive Resonance Theory

ARTMAP Adaptive Resonance Theory Map

BC-Greedy Board Control Greedy

FALCON Fusion Architecture for Learning COgnition and Navigation

GRASP Greedy Randomized Adaptive Search Procedure

HARP Honing Adaptive Resonance Process

MCTS Monte Carlo Tree Search

POMDP Partially Observable Markov Decision Process

UAM-ANN Unstructured Areas Multi-channel Adaptive Neural Network

CONTENTS

1 INTRODUCTION . 31

1.1 Agent reasoning through time . 31

1.2 Computational Creativity for automated systems 34

1.3 Main objective . 35

1.4 Overview . 37

1.5 Document structure . 38

1.6 Contributions and publications 39

I RELATED WORKS AND BACKGROUND ON AGENT
REASONING AND COMPUTATIONAL CREATIV-
ITY SYSTEMS 41

2 RELATED WORK . 43

2.1 Computational Creativity applied to automated systems . . . 43

2.2 Agent controlling in Digital Collectible Card Games 48

2.3 Agent controlling with neural networks based on Q-Learning 50

2.4 Semantic information representation and memory sharing to

enhance agent reasoning . 55

3 AGENT REASONING . 57

3.1 Digital games . 58

3.2 Reasoning process . 60

3.2.1 Reasoning through temporal actions 61

3.2.2 Partially observable Markov Decision Process 61

3.2.3 Strategy as a POMDP path . 63

3.2.4 Observability and POMDP limitations 63

4 THE ADAPTIVE RESONANCE THEORY 65

4.1 Categorization mechanism . 66

4.2 Perfect Miss Match . 69

4.3 Adaptive Vigilance . 69

5 THE HONING THEORY . 71

5.1 Potentiality State . 73

5.2 Bayesian surprise as a novelty metric 73

5.3 Bayesian surprise . 74

6 FUSION ARCHITECTURE FOR LEARNING COGNITION

AND NAVIGATION . 77

6.1 Reactive Model . 78

6.1.1 From Sensory To Action . 78

6.1.2 From Feedback to Learning . 79

6.1.3 Reinforcement learning . 79

6.1.4 Neuron Erosion . 80

6.1.5 Neuron Reinforcement . 80

6.1.6 Adaptive Cognitive Code Pruning 81

6.2 Temporal Difference Model . 81

6.2.1 From sensory to Action with Q-Learning 82

6.2.2 Value Estimation . 83

6.2.3 Bound rules . 84

6.2.4 From Feedback to Q-Learning . 85

II CREATIVE AGENT REASONING THROUGH ADAP-
TIVE NEURAL NETWORKS 87

7 COMPUTATIONAL MODEL OF THE HONING THEORY

AND THE HONING ADAPTIVE RESONANCE PROCESS 89

7.1 Conceptual space of vertexes for analytic and associative phases 89

7.1.1 Honing Network as unstructured information 90

7.1.2 Activation . 92

7.1.3 The Honing Theory algorithm as a GRASP process 93

7.1.4 Discussion . 95

7.2 The Honing Adaptive Resonance process 95

7.2.1 The Honing Theory as an ART system 97

7.2.2 Contextual focus for action prediction 99

7.2.3 Discussion . 100

8 ADAPTIVE NEURAL NETWORKS FOR CREATIVE THINK-

ING . 101

8.1 Expectation ART: Calculating the Bayesian Surprise with an

Adaptive Neural Network . 101

8.1.1 Surprise vector composition . 102

8.1.2 Prediction . 103

8.1.3 Learning . 104

8.2 Proximity Adaptive Neural Network for Precise Matching . . 106

8.2.1 Spectrum coding . 106

8.2.2 Proximity Based Categorization for an Adaptive Neural Net-

work . 108

8.2.3 Inhibition method . 109

8.2.4 Prediction and learning . 110

8.3 Unstructured Area Multi-channel Adaptive Neural Network:

Representing Vast Amounts of Information 112

8.3.1 Channel structure . 112

8.3.2 Activation area . 113

8.3.3 Prediction area . 113

8.3.4 Prediction . 114

8.3.5 Neuron Activation functions . 115

8.3.6 Area inhibition and retrieval . 117

8.3.7 Learning . 117

8.3.8 Resonance checking and reset . 118

8.3.9 Readout . 119

III DEPLOYING THE HONING ADAPTIVE RESO-
NANCE PROCESS IN HEARTHSTONE AGENTS
121

9 HEARTHSTONE MODELS FOR AN ADAPTIVE NEURAL

NETWORK . 123

9.1 Hearthstone search space size assumptions 124

9.2 Micro and macro models . 125

9.3 Numeric model for symbols . 126

9.4 Attribute curves model . 127

9.5 Compact environment model . 127

9.6 Full compact action model . 128

9.7 Partial behavioral action model 129

9.8 Action observability and selection 129

9.9 Extracting microfeatures for Hearthstone 130

9.10 Utility value of a State for Hearthstone 131

9.11 Discussion . 132

10 HONINGSTONE AND HEARTHBOT SYSTEMS 135

10.1 HoningStone . 135

10.1.1 Creativity Metric for GRASP evaluation 136

10.2 HearthBot . 138

10.2.1 Adaptive Neural Network architecture for HearthBot 138

10.2.2 HearthBot as a Metastone interface 138

10.2.3 HearthBot algorithm . 139

10.3 Temporal HearthBot . 142

10.3.1 Temporal Reactive Algorithm for T-HearthBot 143

10.3.2 Temporal Q-Learning Algorithm for T-HearthBot 144

10.3.3 Discussion . 147

10.4 Creative Temporal HearthBot . 149

10.4.1 Algorithm for CTH-HearthBot 149

10.5 Creative Temporal UAM HearthBot 151

10.5.1 Architecture . 151

IV EXPERIMENTAL EVALUATION, RESULTS AND
CONCLUSIONS 153

11 RESULTS . 155

11.1 HoningStone evaluation . 155

11.1.1 Experimental design . 155

11.1.2 Creative process assessment analysis 156

11.2 Metastone behavior analysis . 159

11.2.1 Metastone agents playing against MCTS 161

11.2.2 Metastone agents playing against Board Control Greedy . . 163

11.2.3 Deck win rate signature and discussion 163

11.3 HearthBot evaluation . 164

11.3.1 Experimental design . 165

11.3.2 Simulations . 165

11.3.3 Parameters choice . 166

11.3.4 Overall performance and discussion 167

11.3.5 Overall performance against unobserved decks 168

11.3.6 Cognitive code analysis . 169

11.4 T-HearthBots evaluation . 172

11.4.1 Experimental design . 172

11.4.2 Simulations . 174

11.4.3 Parameters choice . 175

11.4.4 Behavioral T-HearthBots winrate 177

11.4.5 Spectrum T-HearthBots winrate 180

11.4.6 HARP search space exploration 185

11.4.7 General win rate analysis for CTUH-HearthBot 187

11.4.8 Overall performance against unobserved decks 189

11.4.9 Cognitive code analysis . 191

12 CONCLUSIONS . 193

12.1 Overview . 193

12.2 General discussion . 194

12.3 Drawbacks and future work . 197

12.3.1 Automatic feature extraction for semantic reasoning 197

12.3.2 General applicability . 199

BIBLIOGRAPHY . 201

APPENDIX 209

APPENDIX A – THE ADAPTIVE RESONANCE THEORY

PRACTICAL EXAMPLE 211

A.1 Semantics as retrieved memories 213

A.2 Representing information . 214

A.2.1 Frames . 215

A.2.2 Semantic network and Ontologies 216

APPENDIX B – WIN RATE CONVERGENCE 217

B.1 Behavioral T-HearthBots winrate 220

B.1.1 Spectrum T-HearthBots winrate 231

APPENDIX C – PERFORMANCE AND COMPLEXITY ANAL-

YSIS . 241

APPENDIX D – BAYESIAN SURPRISE BEHAVIOR . . . 249

31

1 INTRODUCTION

In the last years, neural networks have been used successfully in order to control

agents (TENG; TAN, 2015; MNIH et al., 2015; SILVER et al., 2016; MIYASHITA et al.,

2017). However, little effort is dedicated on the deployment of creative behavior on them.

Most of the solutions that deploy creative behavior on automated systems, such as agents,

are related to artistic fields (KOWALIW; DORIN; MCCORMACK, 2012; DIPAOLA,

2014; KIM; CHO, 2000; CHENG; LIU, 2008; ZHANG; YANG, 2013; VARSHNEY et al.,

2013; AMORIM et al., 2017). The main challenge, from the creative agent controlling

perspective, is the creation of a system that is able to grow by itself in a fast and stable

way to perform valuable actions, and eventually to develop creative behavior. This is a

hard task, since controlling an agent by itself is not trivial and it involves modeling and

extracting data from its environment and storing it in a way that it can be used to decide

on how to behave properly. Agent control is not only about how to behave, in terms of

reason, but also in terms of motor control and skill, which turns the problem even harder

to solve. Some attempts on how to deploy creative behavior can be seen in the literature

and are typically based on incorporating, in agents, aspects of how creativity emerges

on the human brain (AUGELLO et al., 2017; FITZGERALD; GOEL; THOMAZ, 2017;

AGUILAR; PéREZ, 2017). However, none of the observed solutions deploy a creative

agent, based fully on well-established theories on how the human brain works and how

creativity emerges from its mechanism, that can grow and develop by itself in a fast and

stable way.

1.1 Agent reasoning through time

When dealing with reasoning, an agent needs to concern on selecting actions that

will enable it to complete its objectives. One of the biggest problems, when selecting

actions to perform, is the lack of a way in simulating time. For example, if an agent could

realize that its future and past actions will impact in its overall performance, thus it can

decide in selecting an appropriate set of actions to be performed on the present. Time is

usually simulated in computer programs as a Discrete Event Simulation (HENRIKSEN

et al., 1986), where the concept of a Time Flow, set of discrete time steps, is used to

make agents understand it by a concise and coherent way. Action selection is typically

treated as a search problem, where given a set of possible actions, an agent needs to find a

32 Chapter 1. Introduction

set of future ones that will maximize its performance. To help in performing this search

process, the Time Flow mechanism is typically represented by a Partially Observable

Markov Decision Process (POMDP), where a symbolic network is used to represent how

bad or good an action is at a determined time step from a Time Flow.

There are two major branches when dealing with the time when performing rea-

soning. The first one is related to how to represent and acquire information from a Time

Flow. The second branch is related on how to search on the represented information in

order to maximize an agent performance over time. These two branches can be handled

by two main models on which an autonomous agent, or bot, can be built upon Symbolic

and Emergent (WENG, 2012a). The symbolic solutions use data structures, algorithms,

heuristics and handcrafted non-adaptive behaviors explicitly based on human expertise. In

contrast, the emergent ones commonly use machine learning for designing autonomous

agents. In particular, the emergent solutions can utilize paradigms like supervised learning,

that learns from observations, reinforcement learning, that learns from the interaction with

an existing environment or non-supervised learning, that learns without the intervention

of a specialist (WANG; TAN, 2015).

Typically, symbolic solutions deploy agents that are based on the Monte Carlo Tree

Search (MCTS) (WARD; COWLING, 2009a) and its variants with min-max heuristic and

alpha-beta pruning (YANNAKAKIS; TOGELIUS, 2015; BAIER; WINANDS, 2015). Most

of the symbolic and emergent solutions to control agents come from robotics, and they

have being developed since 1970’s (CARPENTER; GROSSBERG; REYNOLDS, 1991;

WENG; LUCIW; ZHANG, 2013; CELIKKANAT; ORHAN; KALKAN, 2015; TAN, 2004)

with the assistance of neural networks (YANNAKAKIS; TOGELIUS, 2015) and knowledge-

based systems (BASILE et al., 2016; MATUSZEK et al., 2006; SAFFIOTTI et al., 2008;

TENORTH; BEETZ, 2009). These networks can range from Adaptive Resonance Theory

(ART), first proposed by (CARPENTER; GROSSBERG, 1988) and further extended

as its fuzzy counterparts (CARPENTER; GROSSBERG; ROSEN, 1991; CARPENTER;

GROSSBERG; REYNOLDS, 1991; TAN, 1995), to fully brain-like structures such as the

Temporal Context Machine created by (WENG; LUCIW; ZHANG, 2013) and even deep

learning neural networks (MIYASHITA et al., 2017; ZHAO et al., 2016; SILVER et al.,

2016; SUGIMOTO et al., 2015; STEEG; DRUGAN; WIERING, 2015).

Deep learning approaches are used to control agents and are successfully used to

this date. For instance, the work proposed by (SILVER et al., 2016) was the first emergent

1.1. Agent reasoning through time 33

agent that was able to win against a professional GO game player. Recently, all approaches

that have been using deep learning, such as (SILVER et al., 2016; MIYASHITA et al., 2017;

ZHAO et al., 2016; KUNANUSONT; LUCAS; PéREZ-LIéBANA, 2017), have implemented

a mechanism, from reinforcement learning, called Q-learning. This technique optimizes

a set of actions that should be taken by an agent when performing under a POMDP.

However, deep learning approaches tend to be slower in terms of processing time, for

example, the agent proposed by (SILVER et al., 2016) is controlled by a massive cluster

of Central Processing Units and graphics processing units. Besides that, deep learning

approaches are typically used to classify patterns obtained from images, since it mimics the

image filtering process in its convolution layers, thus they are more suitable in interpreting

what an agent is seeing than in performing a reasoning process under a POMDP.

In contrast to deep learning approaches, there is some brain like structures able

to perform reasoning. For instance, The ART (GROSSBERG, 1989), that explains how

the human brain achieves pattern recognition, assembles neural networks that can be

used to perform complex reasoning with raw stimulus and also semantic information.

To this date, the most common form of implementing the ART theory is based on

a neural network called Adaptive Resonance Theory Map (ARTMAP)(CARPENTER;

GROSSBERG; REYNOLDS, 1991). They are from a family of neural networks called

Adaptive Neural Network (ANN), that can change in size by altering its structural

composition. With this mechanism, they seem suitable to represent partially observed

contexts, to perform supervised and unsupervised learning. Most recent implementations

of the ART, such as the fuzzy Adaptive Resonance Associative Map (ARAM) (TENG;

TAN, 2015), enable the use of supervised, unsupervised and reinforcement learning within

the same structure.

The ART family of ANN seems suitable to perform reasoning. However, to support

their POMDP representativeness, a cognition architecture called Fusion Architecture for

Learning COgnition and Navigation (FALCON) (TAN, 2004) is used. With the FALCON

architecture, an agent can learn about its surroundings from scratch by observing and

experiencing. Furthermore, the FALCON architecture takes advantage of the fast stable

mechanism of the ART system to deal with information, thus letting agents learn and

perform at the same time in real time. Besides the ability in simulating a POMDP, none

of the presented solutions handle creativity and are purely used to optimize an agent’s

performance.

34 Chapter 1. Introduction

1.2 Computational Creativity for automated systems

Creative thinking is a human quality and it is defined as the capacity to express valid

solutions by non-usual means. This concept was created exclusively by human cognitive

skills, where its capability in handling problems can vary from fields such as politics and

even science (RITCHIE, 2001). Creativity is classified into two main types: P-Creative

(psychological - generate ideas with local knowledge); and H-Creative (historical - generate

ideas with all available knowledge). Both types work inside a conceptual space, where

concepts or symbols are represented. According to psychology, this conceptual space is

where ideas can be found made by concepts. An example of a conceptual space is depicted

in Figure 1, where it is composed of the concepts screwdriver, screw, tool and ball. An

example of an idea that can be generated from the shown conceptual space is the fusion

of the screwdriver with the screw illustrated in Figure 1, where this idea can represent

that the selected tool can be used to handle a screw. Ideas can be easily generated, but

the main problem when generating them is the lack of a model to measure how creative

that idea really is.

Figure 1 – Creative Thinking conceptual space and idea representation.

Source: By the Author.

Measuring creativity is a hard problem since a consensual definition of what

creativity really is does not exist yet, but it is speculated that its nature is related to create

ideas that are novel and has value, what usually involves human feelings such as surprise,

1.3. Main objective 35

expectation, utility and motivation (RITCHIE, 2001; SCHMIDHUBER, 2010). On the

other hand, there are theories on how creativity works, such as Incubation and Conceptual

Blending. The most promising theory is called The Honing Theory, which describes

creativity based on recent advances in the understanding of the human brain(GABORA,

2010a) in harmony with the foundations where lies the ART networks.

Most of the solutions that are observed in the literature deploy creative systems

that are able to generate artifacts that can be considered creative. In a diversity of fields,

such as artistic painting (KOWALIW; DORIN; MCCORMACK, 2012; DIPAOLA, 2014),

fashion (KIM; CHO, 2000; ZHANG; YANG, 2013) and even culinary (VARSHNEY et

al., 2013; AMORIM et al., 2017). All deployed solutions use some sort of evolutionary

algorithm or heuristics that are able to generate randomized constructions in order to

represent some aspects of the theories of creative thinking. Additionally, research, as the

one conducted by (JUNIOR et al., 2016), tries to represent creativity as a single equation

that can be optimized and used to evaluate the creativity level of generated artifacts.

Few works on creativity were conducted in the field of agent controlling, where most

of the solutions address topics such as dancing and social interactions (AGUILAR; PéREZ,

2017; AUGELLO et al., 2017; FITZGERALD; GOEL; THOMAZ, 2017). Even though

machine creativity being showcased at a variety of applications, there seems to be a clear

gap with respect to emergent solutions that are used to provide the means for an agent to

demonstrate creativity. There is also a lack of solutions that employ computational models

of the creative theories that can be used to generate solutions when performing through a

POMDP. Furthermore, there are not current models that encompass creative thinking

theories and adaptive resonance theories, in order for an agent to perform within a Time

Flow.

1.3 Main objective

To equip a machine with the ability to be creative is a two-fold problem since

defining what is creativity is hard but also unveiling what are the mechanisms inside

the brain that promotes it is even harder. In the first front, much progress has been

made in the field of Computational Creativity, in which scientists now tend to agree

that a creative idea has to be novel but also useful. Quite a few general purpose metrics

have been proposed to evaluate novelty, such as the Bayesian surprise, and also many

36 Chapter 1. Introduction

context-specific ones to measure usefulness in art, music, culinary, games. Recently, even

a context-independent metric to measure both novelty and usefulness together, that is

creativity, called Regent-Dependent Creativity (JUNIOR et al., 2016) has been proposed

and validated on some different fields. This metric was partially inspired by one of the

contributions of this thesis, which we will discuss shortly.

In the second effort, many theories have been proposed to explain how creativity

occurs, from all of them, we would like to highlight The Honing Theory, created by

Liane Gabora (GABORA, 2010a), which proposes that a creative idea is the result of

an alternating process between associative and analytic modes within the brain. In the

associative mode, features from the surrounding environment, sensed by the brain, fire

clusters of neurons that were trained to detect those features, which leads to other concepts,

with more or less intensity, related to them. This exploration phase is then switched to

an analytic phase which chooses, based on a more logical thinking, the ideas which are

worth pursuing. This alternation of modes eventually leads to a creative idea. Thus, this

thesis main objective is to propose and develop methods to deploy human creativity into

an agent’s reasoning process. It was divided into three parts.

In the first part, this research envisioned the creation of a computational model of

The Honing Theory of creativity, that has never been attempted before, which led us to

the formulation of a computational model of it. This model was deployed in a system we

called HoningStone to generate creative card combos for a digital collectible card game

called HearthStone. The challenge was to generate creative card combos, a set of cards

that when played together outpasses their individual powers. This implies in searching a

huge space of possible card combos, which makes traditional approaches inefficient. Our

results showed that HoningStone could generate combos that are more creative than a

greedy randomized algorithm driven by the same creativity metric. An emergent network

representation would be more elegant and desirable, since new cards and mechanics are

frequently introduced, invalidating the static semantic network and taking hours of human

expertise to build a new one.

The second part envisioned to enable an agent to build an emergent solution, not

only to build combos but to generate full strategies which at first are just efficient, not

creative. In this new scenario, the search space is even larger due to the number of cards

and actions combinations and also due to randomness. We then proposed an Adaptive

Neural Network for emergent agent development and control using semantic information.

1.4. Overview 37

This proposal was deployed on Hearthbot, an autonomous agent we created that plays

Hearthstone. Results show that HearthBot achieved on its best version, on average, a win

rate of 80% against the MCTS, which is a state-of-the-art algorithm. However, it was not

able to beat a handcrafted algorithm based on greedy local decisions.

The last part envisioned to make HearthBot also creative and more efficient in terms

of win rate performance, where the Honing Theory was fit within the natural learning

process of the Adaptive Resonance Theory. It led us to the proposal and creation of the

Honing Adaptive Resonance Process (HARP). It is composed of Adaptive Neural Networks

we design to handle creative thinking. Moreover, the agent actions were also not purely

random selected when exploring new possibilities, instead, it used the Bayesian surprise

to unveil possibilities not previously attempted. This creative Hearthbot agent surpassed

the performance of the original Hearthbot and it achieved a win rate performance above

90% against the MCTS and above 60%, in average, when playing against the handcrafted

algorithm based on greedy local decisions. In addition, the proposed creative neural model

is more efficient in terms of storage space spent and execution time.

1.4 Overview

This section presents an overview of the objectives and proposals to facilitate the

reading. This thesis main objective is to propose and develop methods to deploy human

creativity into an agent’s reasoning system through ANNs. It was divided into three

parts that led to the proposal and creation of the HARP. The HARP is the fusion of

the Adaptive Resonance Theory (ART), that describes how the human brain store and

retrieve memories, and also aspects of The Honing Theory, that depicts how the human

brain generates creative ideas. Its main objective is to deploy emergent creative thinking

into agents and facilitate them to solve complex problems. It should be noted that the

HARP incorporates aspects of a symbolic computational model of The Honing Theory

proposed in Chapter 7.

The HARP enables two major creative thinking roles. The first one is the opti-

mization of a strategy that can enable an agent to act in an environment and the second

one is the evaluation of the surprise of each individual experience taken by an agent.

When combined, those two roles develop optimized strategies that were created due to the

influence of the expected surprise. A strategy developed under those roles is categorized as

38 Chapter 1. Introduction

new and valuable, what is a well-accepted definition of a creative idea. To realize that, the

HARP is assembled with three proposed ANNs, an agent reasoning support architecture

called FALCON, that bears it to handle the time and a support architecture that deploys

The Honing Theory into the ART.

The first ANN, created to deploy the HARP, is called Expectation ART, and it

enables an agent to determine the surprise of an observed environment, by learning in its

neurons through a Bayesian surprise model. This is crucial to deploy creative thinking

according to The Honing Theory since surprise is what lead humans to explore and generate

new ideas, that are different and consequently convey a high surprise. A second proposal,

called Proximity ANN, is used to represent observed information in a precise way, due

to the fact that with a ARAM model, that uses ART operations to code its neurons,

can never specialize. The last one is called Unstructured Areas Multi-channel Adaptive

Neural Network (UAM-ANN) and it is used to permit an agent to learn and store more

information and it was designed to enable faster information retrieval than the ARAM

model. Furthermore, it also enables modularity and information sharing among ARAM

fields. Since it is hypothesized that a creative system explores a search space better, thus

it demands more storage space to store all the extra obtained data, the UAM-ANN is used

in this research as a final structure to deploy the creative thinking, through the proposed

HARP, into an agent.

The symbolic computational model of The Honing Theory was evaluated to generate

combos in a digital game called Hearthstone. Moreover, the HARP was deployed as agents

to play Hearthstone. All experimental design, related to the evaluation of both models, is

presented in Chapter 11.

1.5 Document structure

The rest of this document is primarily divided into four parts. The first part is

composed of Chapter 2, that presents the related works in computational creativity system

and agent reasoning with neural networks, and Chapters 3 to 6, that presents all the

necessary background to understand some basic concepts relying ART-based ANNs, the

FALCON architecture and The Honing Theory, behind this research proposals. The second

part, holding the main proposal of this research, is composed by Chapter 7, that presents

the computational model of The Honing Theory and the HARP proposals, and Chapter 8,

1.6. Contributions and publications 39

that presents all proposed ANNs. The third part handles the Hearthstone environment,

how to model, represent and code it. All Hearthstone proposed models are presented in

Chapter 9 and all agents, HoningStone and HearthBots, are presented in Chapter 10. The

fourth part of this document is composed of the results and conclusions chapters, 11 and

12 respectively.

In addition, this document also possesses four appendices. In Appendix A, is

discussed and presented a practical example of the ART. On the other hand, in Appendix

B, are presented complementary evaluations of the HARP when playing Hearthstone.

Moreover, the time complexity and performance analysis for the proposed UAM-ANN,

when deployed inside the HARP, is presented. Finally, in Appendix D, the Bayesian

surprise behavior for the HARP is presented and discussed.

1.6 Contributions and publications

The main contributions of this research are summarized as follows.

∙ The first symbolic model of THT (The Honing Theory) based on Knowledge-Based

Systems. This contribution was published in (GóES et al., 2016) and enabled three

other Master’s Thesis in being developed and their results to be published in

(JUNIOR et al., 2016), (RAMOS; GOéS, 2016), and (AMORIM et al., 2017).

∙ The HARP (Honing Adaptive Resonance Process). Composed by the proposed ANNs

described below, it is the fusion of the ART (Adaptive Resonance Theory) and THT

(The Honing Theory), and it enables an agent to develop creative strategies to solve

complex problems.

∙ The Expectation ART ANN. It enables agents to sense the novelty of a decision when

exploring a search space. It incorporates the Bayesian surprise into its dynamics, to

hold temporal information considering its experience, to perform advanced cognition

and decision making that can lead to novel solutions.

∙ The Proximity ANN. Published in (SILVA; GóES, 2017), it enabled our agents

to model and store information in a compact way, about its environments, with a

precise categorization method. It is mainly used to enable the HARP spending less

space to store received stimulus from an agent’s environment.

40 Chapter 1. Introduction

∙ The UAM-ANN. It is a novel ANN able to represent semantic information hierarchi-

cally, in a similar fashion to Deep Convolution Neural Networks, and it was primarily

designed to handle the amount of information provided by a creative reasoning

system.

∙ Behavioral and non-behavioral feature and action models for the digital collectible

card game HearthStone. It is proposed in this research handcrafted and atomic

feature representation for ANNs. Moreover, are also proposed ways to represent

its reward functions used by the Q-Learning and reactive temporal optimization

methods.

∙ A benchmark evaluation of the Metastone simulator, where it was used in this

research to evaluate all deployed agents when learning and playing HearthStone.

∙ Deployment and creation of HearthStone agents, able to learn and play HearthStone,

simulated by Metastone, and used to evaluate all proposals.

Our secondary contributions include a performance and complexity analysis of

the proposals, an analysis of the Bayesian surprise behavior for decision making when

controlling agents, and practical examples of the ART when deployed in computational

systems.

Part I

Related works and background on agent reasoning and computational

creativity systems

43

2 RELATED WORK

This chapter provides an overview of some state of the art approaches related to

agent reasoning with emergent structures, such deep neural networks and ART systems;

representation of semantic information with ART techniques; and in Computational

Creativity for automated systems, agent control and creativity assessment methods. It is

divided into three prime sections as follows:

a) Computational Creativity applied to automated systems: Discuss automated

Computational Creativity Artificial Intelligence systems in domains like fashion,

artistic painting, culinary and agent reasoning.

b) Agent controlling in Digital Collectible Card Games: Present how agents

perform reasoning in the domain of the Digital Collectible Card Games.

c) Agent controlling with neural networks based on Q-Learning: State of the

art techniques for agent reasoning through neural networks with Q-Learning are

presented.

d) Semantic information representation and memory sharing to enhance

agent reasoning: Presents how information with Adaptive Resonance Theory

based systems can be used to constitute semantics in a distributed way.

2.1 Computational Creativity applied to automated systems

In Computational Creativity, an assessment method makes possible machines

generate and evaluate creative artifacts (BODEN, 2004). It was realized the importance of

a consensual way to evaluate creative thinking since (AMABILE, 1982; PARTRIDGE, 1985;

ORTONY; PARTRIDGE, 1987), where machines started to act in a similar way as human

beings. At that time, most of the assessment methods were based on psychology, describing

it as a mental process that involves surprise, expectancy, and luck (STIENSMEIER-

PELSTER; MARTINI; REISENZEIN, 1995). During the development of a consensual

method to evaluate creativity, surprise started to be used to create artificial agents as

presented by (MACEDO; CARDOSO, 2001; MACEDO; REISENZEIN; CARDOSO, 2004),

to model novelty into its behavior or design. Assessment methods evolved as a set of

mathematical equations that describe creative artifacts as a combination of surprise,

44 Chapter 2. Related work

novelty, and value as shown by (GRACE et al., 2014). To this date, researchers tend to

agree that an artifact has to be new and valuable on a particular domain to be considered

creative (JUNIOR et al., 2016; BODEN, 2015; COLTON et al., 2015; VELDE et al., 2015).

Creativity evaluation is used in many areas, like artistic painting, scientific, digital

games, and even music. Between the related works, the artistic field, the research conducted

by (KOWALIW; DORIN; MCCORMACK, 2012) evaluates how creative a painting is for

human judges. The proposed system is called EvoEco, and it was deployed as a genetic

algorithm. The creativity is measured in the proposal through the Dorin/Korb metric,

where it tells that any randomized system has the potential to generate creative artifacts if

executed during an infinite amount of time. In contrast, the work realized by (DIPAOLA,

2014) proposes a system called DarwinGaze, and it generates a creative artistic painting

through genetic programming. The system is capable of generating random and abstract

painting that, besides being abstract, were considered creative by human specialist judges.

The proposed solutions differs from the most proposed theories about creative artifact

generation as pointed by psychology and neuroanatomy (GABORA, 2010b).

On the field of fashion, the work presented in (KIM; CHO, 2000) uses a genetic

algorithm to generate creative fashion designs. The algorithm is driven by a human

objective function, where its value is given by human experts and used to distinguish

creative from non-creative sets of clothes. In the proposal, the searching space was too

small, thus it is reasonable saying that it was not a big challenge searching for creative

solutions. Another observation from this work is the fact that using human judges do

not seem reasonable for a fully autonomous system since its evaluation is bounded to

the response time of experts. Differently, (CHENG; LIU, 2008) uses a semi-autonomous

approach to design creative cloth sets, where the system was trained through supervised

learning techniques to learn what is considered a creative and non-creative set. A third,

more sophisticated approach proposed by (ZHANG; YANG, 2013) to generate creative

fashion designs, is more focused on learning how humans evaluate creativity through a

radial basis neural network (WENG, 2012b) that is used to guide a genetic algorithm. The

creativity function approximation was crafted in order to reduce the need of using human

judges, thus turning the solution more autonomous than the previous ones.

On the culinary field, the research proposed by (VARSHNEY et al., 2013) is focused

on generating creative culinary recipes. The system uses a novel creativity metric based

on the Bayesian surprise. A further extension of is the research conducted by (AMORIM

2.1. Computational Creativity applied to automated systems 45

et al., 2017), where the authors have used a formalized creativity assessment method

called Regent Dependant Creativity, proposed by (JUNIOR et al., 2016). The proposed

evaluation uses a knowledge-based system in the form of a synergy network together with

a Bayesian surprise system, thus being able to calculate the value of a creative idea by

adding a synergy relation between concepts, extracted from the proposed synergy network,

plus the novelty, calculated through Bayesian surprise, of the generated artifact. The

proposal presented by (AMORIM et al., 2017), uses the same principles of computing the

Bayesian surprise based on the molecular interaction between flavors for the human taste

for already generated recipes, but in addition, it uses the synergy network in order to

generate valuable artifacts. The proposed method assumes that creativity can be measured

with a single equation, thus simplifying the optimization process. However, much of the

work that refers to creativity explains that it is generated not in terms of evaluation, but

rather in terms of the process and even the interaction within reality.

With respect to agent controlling, the work proposed by (AGUILAR; PéREZ, 2017)

presents an agent controlling scheme that permits it to interact with an environment, where

the author had deployed a humanoid agent that is able to interact with objects through

its arms. An interesting point about this work is related to the fact the agent incorporates

an attention module that guides its will and preference in interaction with certain objects.

The agent is controlled by schemes, where each one is responsible to hold information

on how its actions, performed under an observed environment, influencing its mental

state. The authors also propose the idea that an agent controlling system is considered

creative if it obeys the criteria of novelty, utility, emergence, adaptation, and motivation.

In contrast with other solutions in generating creative artifacts, this proposal seems based

on experience, where through the interaction with reality a system can generate creative

ideas. This approach is also more similar to the ones adopted to control agents in real

time with neural networks, such as the deep learning and FALCON (MIYASHITA et al.,

2017; ZHAO et al., 2016; KUNANUSONT; LUCAS; PéREZ-LIéBANA, 2017; TAN, 2004;

TENG; TAN, 2015), but it uses a symbolic model of reality provided by a specialist that

codes actions and environments.

In contrast to (AGUILAR; PéREZ, 2017), the research conducted by (AUGELLO

et al., 2017) proposed in using a deep learning network to teach a robot how to dance.

The network is trained with several skilled dance moves, where the robot can perform

each one of them. All moves are performed in time with the rhythm of the music at each

46 Chapter 2. Related work

beat. The robot can perform well at a variety of songs and even in songs never listened

before by it. All generated steps during a song are improvisations and consequently can be

considered creative when evaluating novelty. In contrast with other creativity assessment

metrics, the proposal seems to be able to generate novel solutions, but it fails to represent

explicitly what creativity is according to (JUNIOR et al., 2016; BODEN, 2015; COLTON

et al., 2015; VELDE et al., 2015).

An interesting work on how robots can behave creatively was developed by

(FITZGERALD; GOEL; THOMAZ, 2017). The conducted research points how a robot

can behave creatively by deciding what actions to take in order to be considered novel.

In order to learn new tasks, the robot can asks for human assistance, where a human

teacher can teach the robot new actions to perform. Furthermore, the learned new actions

can be used in different environments. The proposed work demonstrates some concern

about how creativity is deployed under agents and it also addresses how the embodiment,

how the agent perceives and interacts with reality, plays an important role in deploying

creative robots. By contrast with other approaches, the proposal seems not to use any

neural architecture in order for an agent to reason or learn new stimulus, thus it shows

that is feasible to deploy creative agents to perform simple tasks without using emergent

learning methods.

In this research, is proposed the HARP, based on Adaptive Neural Networks

to develop creative thinking as a mental process that involves surprise, as argued by

(AMABILE, 1982; PARTRIDGE, 1985; ORTONY; PARTRIDGE, 1987). The HARP is

rather emergent as adopted by (AUGELLO et al., 2017), than symbolic as argued by

(STIENSMEIER-PELSTER; MARTINI; REISENZEIN, 1995; MACEDO; CARDOSO,

2001; MACEDO; REISENZEIN; CARDOSO, 2004; GRACE et al., 2014), developed by

(KOWALIW; DORIN; MCCORMACK, 2012; DIPAOLA, 2014; KIM; CHO, 2000; CHENG;

LIU, 2008), and (ZHANG; YANG, 2013; VARSHNEY et al., 2013; AMORIM et al., 2017;

JUNIOR et al., 2016; AGUILAR; PéREZ, 2017; FITZGERALD; GOEL; THOMAZ, 2017).

The proposal cares for adaptation and motivation, characteristics of human creativity

concerned by (AGUILAR; PéREZ, 2017). Moreover, human expertise is not used on this

research to develop creative thinking during learning stages, as used by (KOWALIW;

DORIN; MCCORMACK, 2012; DIPAOLA, 2014; KIM; CHO, 2000; CHENG; LIU, 2008;

ZHANG; YANG, 2013) and (FITZGERALD; GOEL; THOMAZ, 2017).

Luck is a characteristic of human creativity addressed by (STIENSMEIER-PELSTER;

2.1. Computational Creativity applied to automated systems 47

MARTINI; REISENZEIN, 1995) and (MACEDO; CARDOSO, 2001; MACEDO; REISEN-

ZEIN; CARDOSO, 2004). In this research, it is not used as a basis in which creative

thinking can emerge since these research proposals assume a controlled exploration and

self-development scheme. On the other hand, expectancy is deployed within an Adaptive

Neural Network’s prediction routines since it is important to predict what could possibly

help an agent in solving problems.

Surprise and novelty seems to be reasonable ways to measure how new an idea is,

thus being able to calculate a creative level of a generated artifact or idea as argued by

(MACEDO; CARDOSO, 2001; MACEDO; REISENZEIN; CARDOSO, 2004; GRACE et

al., 2014) and adopted by (KOWALIW; DORIN; MCCORMACK, 2012; DIPAOLA, 2014;

KIM; CHO, 2000; CHENG; LIU, 2008; ZHANG; YANG, 2013). But in this research, it is

used only the concept of novelty as adopted by (VARSHNEY et al., 2013; AMORIM et

al., 2017; JUNIOR et al., 2016), since it can lead to equal results. A utility value is also

utilized, in this research, to guide the creative agent reasoning process from the HARP, as

accomplished by most of the observed researchers from the literature since it is a common

variable that helps to guide an optimization process and it is also a part of the creative

thinking definition.

Novelty is developed by the solution in an emergent way by a proposed Adaptive

Neural Network called Expectation ART, differently from (VARSHNEY et al., 2013;

AMORIM et al., 2017; JUNIOR et al., 2016) that calculate the Bayesian surprise with the

help of a knowledge database. Furthermore, the utility value is also utilized to develop

creative strategies, and it is optimized by a learning technique called Q-Learning. This

technique allows the agent to realize sequence of events and the existence of time when

generating creative strategies.

The proposal does not rely on randomness or evolutionary approaches as developed

by (KIM; CHO, 2000; CHENG; LIU, 2008; WENG, 2012b; DIPAOLA, 2014). But uses

neural networks to allow an agent to develop by its own. However, differently, from

(WENG, 2012b; AUGELLO et al., 2017) that use supervised learning, it uses proposed

neural networks to resemble The Honing Theory of Creativity and The Adaptive Resonance

Theory to deploy unsupervised learning and reinforcement learning. This nature is what

yields the solution to develop on its own and also adapt to a distinct set of situations

according to its needs and in dynamic changes in an environment, what is not accomplished

by other proposals.

48 Chapter 2. Related work

As a final remark, with respect to Computational Creativity, the proposed HARP

is an emergent neural system, differently from (KOWALIW; DORIN; MCCORMACK,

2012; FITZGERALD; GOEL; THOMAZ, 2017; VARSHNEY et al., 2013; AMORIM et

al., 2017; JUNIOR et al., 2016; AGUILAR; PéREZ, 2017) that are symbolic. This is due

to the fact that the HARP is an Adaptive Neural Network neural system that simulates

a POMDP used to allow an agent to model its reality and develop creative thinking.

Since the proposal simulates a POMDP, one of its prime objectives is to optimize and

determine an optimal path that resembles a strategy. The proposed solution confirms a

creative idea is a POMDP path or strategy, where its optimization is influenced by novel

decisions, when the agent is performing in its reality, triggered by implemented aspects

of The Honing Theory. As observed from the analysis of the Computational Creativity

related works presented in this document, this approach was never attempted before and

it is in conformity with two theories that describe how the human brain works.

2.2 Agent controlling in Digital Collectible Card Games

Digital card games are a fertile territory for computational intelligence since they

have both incomplete information about the opponents cards and randomness in card

drawing (WARD; COWLING, 2009b; BURSZTEIN, How to appraise hearthstone card

values). Ward (WARD; COWLING, 2009b) proposes the use of MCTS to select cards to

play on each turn in Magic: The Gathering. Like Hearthstone, Magic: The Gathering has

incomplete information since a player does not know the opponents cards, making MCTS

a suitable algorithm as it evaluates possible moves on each turn instead of all the moves.

Thus, the MCTS approach is tested in simulations against a rule-based bot designed by

an expert.

In (WARD; COWLING, 2009c), the authors use a genetic algorithm to generate a

set of cards that balances the card game Dominion. Based on three fitness functions, the

results showed that there are specific cards that govern game balance independently of

player skill and behavior. In contrast, (SEPHTON et al., 2014) proposes a move pruning

heuristic for MCTS in the card game Lord of War. They experimented a single hard

pruning heuristic, multiple heuristics and state-extrapolation, in which results show that

the same heuristic could be applied to other domains. For partially observable games with

simultaneous actions, Teytaud (TEYTAUD; FLORY, 2011) proposed an extension to UCT

2.2. Agent controlling in Digital Collectible Card Games 49

(Upper Confidence Tree) and applied to a card game called Urban-Rivals. With respect

to card evaluation, (BURSZTEIN, How to appraise hearthstone card values) proposes a

simple linear model to evaluate Hearthstone. It shows which cards are undervalued so

players can build more efficient decks and combos using those cards. While this model

works for basic cards, it breaks for more recent cards and requires careful modeling of each

card with specific effects, thus resulting in a handcrafted model.

When dealing with digital collectible card games, it seems that the MCTS approach

is quite popular, due to its fast and easy to implement algorithm. It can be also observed

that MCTS approaches, even working together with deep learning methods (SILVER et al.,

2016), are used often to control agents in an environment with a higher search space for

selecting actions, like board and card games, because it is fast to handle action selection

by doing randomized sampling at a tree structure used to represent game states. From a

digital collectible card games perspective, there is a gap on the literature with respect to

autonomous agents applied to Hearthstone, where a great part of the literature deals with

Magic: The Gathering due to the fact that it is a more popular, older game.

Since the proposals from this research are emergent, an approach based on the

Monte Carlo heuristic adopted by (WARD; COWLING, 2009b) was not used. Instead, the

agent do not explore a search tree but rather optimize a simulated POMDP path that is

learned and created during the game. Furthermore, the proposals assume that the learned

POMDP can suffer modifications if necessary, thus giving more room for it to adapt into

different situations.

The first contribution of this research, the symbolic computational model of The

Honing Theory, was also used to generate artifacts, as also accomplished by (WARD;

COWLING, 2009c), however, the primary contribution is used to generate broad strategies

that effectively permit it to play Hearthstone.

As accomplished by (SEPHTON et al., 2014), the proposals also use a pruning

method to discard places that can not contribute to beneficial results. However, in this

research, the pruning method is implicit in the POMDP path optimization technique

called Q-Learning. This technique creating a trail in which the agent should follow to

win the game. To guide the Q-Learning optimization, a card evaluation scheme was also

utilized, and it was based on the evaluation method presented at a HearthStone simulator

called Metastone. The proposed evaluation methods seem to be more robust in terms

of variables considered and in a working range to evaluate cards than the methods used

50 Chapter 2. Related work

by (BURSZTEIN, How to appraise hearthstone card values) to generate decks, since it

considers the Q-Learning’s behavior and numeric interval.

Differently, from (SILVER et al., 2016), this research proposal does not rely on

deep learning approaches to learn how to compete in the game. It can be noted that

the presented related work used two networks to evaluate the game and generate viable

strategies, however, it was based on a dense Graphics Processing Unit cluster that demanded

vast amounts of energy. On the other hand, this research proposes that two Adaptive

Neural Networks, designed to develop creative thinking, can play a digital game with

less computational effort and also able to obtain reasonable performance results against

human-like agents. Furthermore, the proposal enables an agent to learn faster than deep

learning approaches, what can be crucial to perform in time if acting in a time-constrained

environment.

2.3 Agent controlling with neural networks based on Q-Learning

The Q-Learning technique has been widely used to control and optimize agent

behavior through time, thus dealing with the delayed reward problem (TAN et al., 2008).

As introduced by (MNIH et al., 2015), deep learning together with Q-Learning can be

a useful tool when creating a system that is able to play a game and behave like a

human player. This kind of system can develop strategies over time that considers how an

agent should behave according to what happened or what will happen. As shown in the

subsequent paragraphs, deep learning approaches with Q-learning are being widely used,

since they provide flexibility giving full autonomy to the learning system. However, it is

important to note that those kinds of networks are bounded to its static structure of layers

and neurons, thus obligating the system to learn on a structure defined a priori. In contrast

with deep learning approaches, the class of networks called temporal FALCON (TAN et

al., 2008), seems also suitable to play games by simulating a POMDP. However, it lacks

the ability to approximate functions, because of its fast and stable learning mechanism,

thus not being as suitable as deep learning approaches for function approximation.

One of the most famous attempts developing an adaptive agent, where the authors

AlphaGo, is an artificial intelligence that is able to play a game called GO (SILVER et al.,

2016). The proposal is based on a deep learning neural network that analyses the game

patterns, that evaluates states through a policy network, performs Monte Carlo rollouts,

2.3. Agent controlling with neural networks based on Q-Learning 51

and a value network, that is able to tell if a state looks like a winning state or not. The

solution the two evaluations into a MCTS tree search process in order to select an action

that maximizes the agent probability of victory. The proposal was able to win against

one of the most virtuous players of the Go game on the world by a score of 5 x 0 in favor

of the bot. This research shows that deep learning approaches are capable of controlling

agents, however, though requiring a higher computational cost. The proposed technique

was deployed into a 1202 Central Processing Unit cluster that has 176 Graphics Processing

Unit. It can be observed the proposal relies on visual pattern recognition and searching

substantial amounts of states through a massive parallel power, thus its high accuracy

when performing in a computer cannot be ensured.

One of the most recent works on Q-Deep Learning is presented in (MIYASHITA

et al., 2017), where the author proposes a framework able to incorporate reinforcement

learning and supervised learning, called separated network shared network models. They

have used two multi-layered networks with three convolution layers and two fully connected

layers to deploy reinforcement, supervised and mixed learning. The results were applied

in a game where the main objective of a player is to obtain an apple that pops up at

a random position in a grid world. This work is directly related to Computer Vision

since what the agent is codding from the game is based on what it is perceiving. This

method seems suitable in recognizing patterns, however, one of most concerning problems

is related to the fact that multi-layered networks have a higher learning time, thus their

application was trained with 105 frames that contain human moves captured in logs.

Another observation that can be drawn from this work is the fact that it involves two

types of networks, where the supervised type comprehends information obtained from a

specialist and a reinforcement type learns how to play with Q-learning. Nevertheless, it

seems that the primary object of the proposed work is to train agents that behave more

human likely.

Differently, from (MIYASHITA et al., 2017), the work proposed by (KUNANUSONT;

LUCAS; PéREZ-LIéBANA, 2017) presents a general bot that works with a deep learning

Q-Network in order to play any kind of game. This network is effective to relate visual

patterns with convolution layers and a dense layer, where the recognized patterns are

used to train a Q-Learning algorithm. The proposal seems robust enough in learning to

compete in various games with a unified structure. Furthermore, the trained agent can

play a series of games by perceiving a broad environment and performing an image pattern

52 Chapter 2. Related work

recognition technique. However, when using a deep neural network, an agent can not

handle learning and performing routines at real time, thus it is desirable that the network’s

structure can adapt, into flimsier structures, according to the game domain. Furthermore,

the authors also show that knowledge transfer can help when performing in real time by

using previously acquired knowledge into unknown environments.

Another work that had used the Q-learning technique is the research conducted by

(ZHAO et al., 2016), where the author has successfully applied the Q-learning technique

with a temporal error calculation rule called State Action Reward State Action. As in

(MIYASHITA et al., 2017) and (KUNANUSONT; LUCAS; PéREZ-LIéBANA, 2017), the

proposed solution uses pattern recognition from visual patterns from games. It can be

observed from this work that, the author had operated a Deep Q-Learning network, that

handles the Q-learning learning equations inside its loss function when adjusting neuron

weights from a bunch of convolution layers. The Q-learning is optimized in this work by a

gradient-descendant method. It can be observed that the results show that the agent’s

behavior converge into a local optimum but it also seems unstable around its convergence

point. That behavior could be related to the fact that the network’s learning method is

sensitive and slow, due to convergence problems related to the model used to represent

the information obtained from the game and even the optimization method used.

One of the most related work was the proposal of an agent controlling architecture

by (TAN, 2004), where an adaptive neural network, based on fuzzy ART operations, with a

FALCON is used to control agents in real time. This FALCON model encompasses a reactive

model based on sense, thinking and acting, thus an agent was able to navigate through

a hypothetical minefield. A further extension to the FALCON model was the temporal

FALCON (TAN et al., 2008), where temporal difference methods were incorporated to

perform reasoning considering time. In a recent effort to control agents in real time, (TAN,

2004) proposes combinatory operations to be used instead of fuzzy ART, thus resulting

in a more precise mechanism to control the agent in a game called Unreal Tournament.

Both proposals seem suitable when controlling agents in real time, however, they do need

a generalized input, that can represent invariant information about an environment, thus

they are not suitable in dealing with precise semantic information.

One of the advantages when using the proposal from (TAN et al., 2008), is the fact

that the system is stable and encompasses a fast learning fuzzy technique. By using this

fast learning and stable method the proposed system was able to compete in a game in

2.3. Agent controlling with neural networks based on Q-Learning 53

real time without having issues to represent information neither in storing it inside the

network’s neurons. This kind of approach differs from deep learning ones with respect to

function approximation, where the deep learning methods try to map the entire game

environment as a single equation coded in a distributed way inside its neuron layers.

On the other hand, the approach proposed by (TAN et al., 2008) tries to store every

possible pattern from the game as an adaptive cluster of neurons, that can grow or shrink,

to constitute unique stages of a game. There is a payoff when employing this method,

where if using it an agent will no longer be able to precisely match patterns for function

approximation.

In contrast to (TAN et al., 2008), the work proposed by (TENG; TAN, 2015) uses a

double Q-learning approach in order for an agent to play the minefield game. The proposed

technique seems to converge better and faster than conventional temporal FALCON

models, it is important to note that the proposed minefield problem is relatively easy to

solve and conventionally fits the ARAM fuzzy input coding. Furthermore, the explored

minefield, in (TAN, 2004) and (TENG; TAN, 2015), the agent navigate through a 10× 10

size minefield grid with 10 mines. It seems reasonable to assert that if the environment or

the quantity of the mines changes over time, the performance of the agent should not be

as good as presented by the authors. That stems from the fact that the search space for

the solution will be bigger and harder to explore.

According to most part of the work presented at the state of the art, the Q-Learning

technique seems to be performing consistently through various domains. Deep learning

approaches are quite a popular and seem to be used often to recognize patterns on images

and thus an agent was able to represent a virtual Q-Learning table, and not to form a

higher cognition system that deals with semantic information. The main problem when

using deep learning approaches is the slow learning rate that those networks tend to have,

thus increasing the learning time for an agent when interacting with an environment.

Another problem is that deep learning approaches tend to mimic image filtering processes

through its layers, thus most applications tend to have a larger network size that can

compromise the ability to be used by low-end computers. The last and one of the major

problems is that the network learned stimulus is unstable, sensitive to environmental

changes since they try to simulate function coefficients among their structure composed

of neurons. Furthermore, it seems that fuzzy approaches, with networks from the ART

family, can do a better job when doing fast and stable categorization. Especially, the

54 Chapter 2. Related work

ARAM network can map a virtual POMDP with the FALCON architecture, thus an agent

was capable of understanding its environment to take decisions. Some extensions for the

ARAM network had also used Q-learning efficiently, but it is important to note that all

the presented work that use this class of network deal with simpler problems where image

classification and feature extraction are not dealt by the system.

To deploy the HARP, the primal contribution of this research, it is proposed three

Adaptive Neural Networks. The solution is also based on the Q-Learning method as the

deep learning approaches (MNIH et al., 2015; SILVER et al., 2016; KUNANUSONT;

LUCAS; PéREZ-LIéBANA, 2017; MIYASHITA et al., 2017; ZHAO et al., 2016) and the

ones based on Adaptive Neural Network (TAN, 2004; TAN et al., 2008; TENG; TAN, 2015).

Despite of that, the proposal does not use a double Q-Learning technique, as encompassed

by (TENG; TAN, 2015) and do not use a Gradient Descent optimization technique, as

done by (ZHAO et al., 2016), since the primal objective is to deploy a creative thinking

system and not to enhance the Q-Learning method.

Since the solution is based on Adaptive Neural Networks, as also adopted by (TAN,

2004; TENG; TAN, 2015), it primarily permits the learning system to adjust its size

according to its needs, to encompass more knowledge or change a previously learned one,

permits fast learning, enable real-time learning, and it is not dependent on a Graphics

Processing Unit cluster. Furthermore, the system also encompasses reinforcement learning

and non-supervised learning, moreover, it also supports supervised learning. Finally, it does

not encompass visual pattern recognition techniques, as adopted by (MNIH et al., 2015;

SILVER et al., 2016; KUNANUSONT; LUCAS; PéREZ-LIéBANA, 2017; MIYASHITA et

al., 2017; ZHAO et al., 2016), since all data from an observed environment is collected

directly from a simulator through a symbolic data model.

One of the proposed ANNs, called Expectation ART, is used to learn and calculate

the Bayesian surprise, since to this date there are not neural networks capable of achieving

this for real-time creative thinking. This network is based on a fuzzy ARAM, as used

by (TAN, 2004; TAN et al., 2008; TENG; TAN, 2015), however, in its internal structure,

memory neurons are used to store information about POMDP states. Those memory

neurons can store any kind of data and are used to store information about which action is

most often taken by an agent when performing, thus allowing to take decisions upon that

fact. Despite being able to act as a neural network alone, the most important contributions

of this proposal are its neuron learning and storage models, based on the Bayesian surprise,

2.4. Semantic information representation and memory sharing to enhance agent reasoning 55

not used by any of the related works, to recover temporal information about states and to

know the surprise level of a perceived environment.

In addition to the Expectation ART, it is also proposed a proximity-based ANN.

This network was proposed to permit precise categorization, learn and retrieve knowledge

as close as possible to what was sensed, to deal with situations where semantic information

cannot be generalized during learning. It is also based on the fuzzy ARAM, as used by

(TAN, 2004; TAN et al., 2008; TENG; TAN, 2015), however, its major difference is that it

uses a Euclidean distance based metric for learning and it was deployed into a Graphics

Processing Unit to verify how many neurons need to be stored in order to simulate a

POMDP with minimum generalization. If seems from the proposed HARP perspective;

this network is used alongside with the Expectation ART to deploy creative thinking.

The last proposed ANN was used to permit the HARP to perform in real-time,

handle more information than a typical ARAM based system, and it is presented at the

subsequent section.

2.4 Semantic information representation and memory sharing to enhance

agent reasoning

As argued by (TAN, 2004), the ARAM model is a set of multiple ART maps to allow

information sharing and a multidimensional field mapping to represent an environment.

The main problem is that the network growth is exponential according to the number of

fields used to represent its knowledge. Furthermore, it demands a high computational cost

to perform in real-time. There is one major work that used multiple ARAMs to represent

knowledge, trying to avoid that overgrowth and to enable memory sharing, developed

by (WANG; TAN; TEOW, 2017), where they are used to represent memory through a

centralized managing structure. The main problem is that (WANG; TAN; TEOW, 2017)

work with several ARAM modules that do not share their fields and consequently falls

in the same problem as the single ARAM model. In order to tackle both problems, it

is proposed the UAM-ANN. The main difference from the prior related works is due

to the fact that the UAM-ANN is assembled as a single structure, as a Convolutional

Neural Network, where each level has a different semantic meaning. Furthermore, the

UAM-ANN permits fast information recovery and to store large amounts of data due to a

tree structure layout. Differently, from (WANG; TAN; TEOW, 2017), the UAM-ANN is

56 Chapter 2. Related work

mainly designed to serve as a replacement for each individual ARAM, faster and to handle

more information.

Differently, from all related works documented in this research, information is repre-

sented by meaning levels to deploy a FALCON architecture that can retrieve information

about the simulated POMDP in a faster fashion and also enable to store information

about more states. Each level of the UAM-ANN can represent different kinds of neurons,

what is similar in deploying ARAM fields with different kinds of neuron coding techniques.

Furthermore, each level can also predict by its own, what is also different from the original

ARAM structure. Since it is hypothesized that a creative system explores a search space

better, thus it demands more storage space to store all the extra obtained data, the

UAM-ANN is used in this research as a final structure to deploy the creative thinking,

through the proposed HARP, into an agent.

57

3 AGENT REASONING

This chapter portrays a background on agent reasoning process since it is crucial

to understand how the concept of time is simulated by computer programs do deploy

a reasoning system. It shows how an agent sees and interacts with a virtual world that

simulates time through the concept of a Time Flow, concept described during the 70’s by

(SZYGENDA; HEMMING; HEMPHILL, 1971) as a way to represent time and sequence

of events, simulated by a POMDP.

What enables an agent to perform actions on an environment are processes that

control its behavior though structural layers (BROOKS, 1986; GULDNER; UTKIN;

BAUER, 1995). Those structural layers are typically assembled with an Actuation layer,

responsible for all its motors, devices and sensors that directly interact with an external

world, a Hardware layer, that holds all the necessary hardware to control its behavior

through programs, and an abstract Reasoning layer, that permits it to reason about what it

will do, what it can do, what will be more profitable for it in terms of completing objectives.

This layered system is assembled, in each of its layers, as a hybrid control system between

reactive and deliberative solutions (ABDELLARIF et al., 2012; BRUNETE et al., 2012).

Considering the reasoning layer, the main problem is the lack of a mechanism that

empowers agents with reasoning to decide what is good and what is bad in any environment

𝑒. For example, in a set of 𝑛 actions that an agent can perform upon the presentation of

an environment 𝑒, it needs to define which one will result in the most profitable reward

leading to a new environment 𝑒𝑛𝑒𝑤 that favors the agent’s existence. A system that solves

this problem can be created in two ways: Emergent; and Symbolic. Symbolic solutions

are created by a specialist and they are assembled by hand, where a specialist defines

for the agent what it will be considered good and bad. Moreover, emergent solutions are

self-deployed and created by the agent itself with the help of learning techniques.

Emergent solutions are created to this date with the help of neural networks such as

the Temporal Context Machine, ART, Deep Learning Artificial Neural Networks (WENG;

LUCIW; ZHANG, 2013; TAN et al., 2008; WANG; TAN, 2015; WENG, 2012b). One of

the most concerning problems of using a neural network with reinforcement, unsupervised

and supervised learning, is that the system will reason exclusively about what it is trained

to, not adapting to different situations. To tackle this problem, a cognition architecture,

such as the FALCON (TAN, 2004), is used to enhance the neural network’s abilities. With

58 Chapter 3. Agent Reasoning

this architecture, the neural network stops being a data structure capable of only mapping

function values and can be used to grasp the existence of a sequence of events, semantics

in the actions performed by the agent and also the existence of time.

3.1 Digital games

When analyzing the behavior of an environment in the real world it can be realized

that it has much in common with digital games. For example, a player can feel the sensation

of being inside a universe with the notion of time and space. In fact, what happens inside

of a game that simulates the concept of time, and all the interactions that happen inside

of it occur within a predetermined space. Considering the simplified structure of games in

comparison to reality, in this research, the notion of agent controlling is explored with

the help of games and related to computer-simulated programs. For instance, the game

Solitaire, depicted in Figure 2, is an example of a game that simulates the concept of time,

where each move performed by a player is taken in discrete time moments referenced in

this research as Decision Steps. The main structure where each decision steps interacts

is called Time Flow and it is a simulation of time (HENRIKSEN et al., 1986), where it

defines how the concept of time should be represented in computer programs.

Figure 2 – Time flow in a Solitaire game with discrete decision steps

Source: By the Author.

A Time Flow inside a game can be manipulated at will, but from a player’s

perspective it flows typically towards future. It is used to describe changes in position and

state of objects in games. Considering the Solitaire example, time helps in determine the

3.1. Digital games 59

position of cards, the player score, the available cards to buy, what cards players can move

and interact with at different moments. To identify a determined position at the Time

Flow it is necessary a snapshot of it containing every information about the game that has

not suffered any change on a measured interval. This information can be obtained from a

window or a singular point at a Time Flow and it is called as State and is referenced on

this research as 𝑇𝑆.

States contain all the information that is used to represent a game. For instance,

what players can see when playing games is the information inside a 𝑇𝑆𝛼 at a moment 𝛼

on a Time Flow. Time is perceived in games by observing a sequence of States reached

by decision steps, where each step has the capacity in changing information inside 𝑇𝑆𝛼

leading to a new 𝑇𝑆𝛼+1. What mainly differs game types, between real time and discrete

time, and consequently how players interact with them, is how often States are obtained

from a Time Flow and used by a player. This model of representing time is widely used to

simulate not only games but also computer programs in general (GOLDSMAN; NANCE;

WILSON, 2010).

In reality, time is a measurement of the difference from what is old to what is new

and this measurement is what creates on humans the illusion of a Time Flow and change

towards future. Analogous to reality, the Δ𝑇𝑆 change on information from a State to

another is what gives the illusion of time in a game. It is important to recognize what

caused any change on information, because it will permit a player to interact with those

sources and maybe win a game.

To establish what can cause a change on information inside a State, they can be

organized as a set 𝑇𝑆𝑠𝑢𝑝𝑒𝑟. This set, can be handled by a computer, and it is responsible

to store all States that occurred or will occur on a game in its Time Flow. The set 𝑇𝑆𝑠𝑢𝑝𝑒𝑟

is then composed by {𝑇𝑆𝑠𝑡𝑎𝑟𝑡, ..., 𝑇𝑆𝑖, ..., 𝑇𝑆𝑒𝑛𝑑}, where 𝑇𝑆𝑠𝑡𝑎𝑟𝑡 is the initial State at the

start of the game, 𝑇𝑆𝑒𝑛𝑑 being the final State at the end of the game and 𝑇𝑆𝑖 being

an intermediate State between the start and end. There can be two kinds of changes in

information on a Time Flow inside a game: 1) Known Changes; and 2) Unknown Changes.

The Known Changes lead to 𝑇𝑆𝑘 where 𝑘 is an arbitrary previously known States, that

already happened and are occurring again. On the other hand, the Unknown Changes lead

to unknown 𝑇𝑆?, that never happened before, where the symbol ’?’ is used to represent

unknown states of a Time Flow.

60 Chapter 3. Agent Reasoning

3.2 Reasoning process

The process of controlling an agent is what permits it to sense the environment,

itself, and reason about what actions, set of events, it should prioritize to be performed

when interacting within a Time Flow through its Decision Steps. As shown by the example

of the agent controlling depicted in Figure 3, reasoning occurs as the last stage of a

controlling process. This control process starts by observing an external environment and

extracting meaningful data from it through the help of techniques from Computer Vision,

Signal Processing and related areas, that information composes a game snapshot or a State.

All that data is organized into symbols, sets of meaningful data, representing information

about an environment. All assembled information is sent into a reasoning architecture

that uses algorithms and heuristics to decide what action an agent should prioritize. The

selected action passes through a translator to be performed in an observed environment.

This reasoning process is referenced in this research as a cognition.

Figure 3 – Agent control process from data acquisition to decision making.

Source: By the Author.

The reasoning process starts after obtaining a State from a Time Flow, showed in

Figure 3, and it is desirable that it ends before the acquisition of a new State. This avoids

losing or delaying information about what is happening inside of a game. Furthermore,

an agent can also enter an idle mode, automatic pilot, if the reasoning for a State is

taking too much time to finish, thus it will be able to perform default actions affecting

less its performance. The frequency of States acquisition defines the genre of a game,

from real-time, acquired as faster as a computer can, to discrete time, acquired at specific

3.2. Reasoning process 61

moments defined by a game’s rules. It is common in associating the complexity of a game,

how difficult it is to solve or understand, by its nature, continuous or discrete. However,

the amount of captured States is the defining factor for how often a game snapshot is

perceived.

3.2.1 Reasoning through temporal actions

Before any reasoning could be achieved, the agent needs to establish what actions

are important, good or bad, in order to define what its algorithms and heuristics should

seek for. That is a problem since there is no standard way to define what actions are good

or not, thus turning most of the existent solutions in agent reasoning tied in predefined

ways to calculate the goodness of actions. In order to tackle this problem, in this research,

the agent reasoning is guided by experimentation, where if an agent does not know the

goodness of an action, then it should try performing it in order to learn. The assumed

scheme of control is inspired by an agent control architecture called FALCON presented

in Section 6. This architecture enables an agent to define its goals by experimentation and

can encompass reinforcement, supervised and unsupervised learning.

The goodness of an action is stored in the form of a reward that is represented

by a function value in order for an agent to recognize exactly which actions to prioritize.

The primary problem is the lack of a structure to store the reward of each possible

action that can happen on each State. Actions rewards are also influenced by others that

already happened and will happen in a Time Flow, thus causing a temporal dependence

between actions when reasoning about which one is better at an observed State. It is

essential to note that, rewards obtained from performing actions, can be influenced by

other components from the game that can be guided by randomness, thus possibly leading

an agent into uncertain States and turning harder the task of defining a general set of

events that it needs to initiate.

3.2.2 Partially observable Markov Decision Process

In order to model rewards from actions, as addressed in Section 3.2.1, this research

uses a system based on a POMDP (SONDIK, 1978). It is a numerical probabilistic model

that enhances the Time Flow representation by associating actions, that can be performed

in states, with rewards. It is described as a tuple, ordered list of elements, of the form

62 Chapter 3. Agent Reasoning

(𝑆, 𝐴, 𝑇, 𝑅, Ω, 𝑂, 𝛾), where 𝑆 is a set of states, 𝐴 a set of actions, 𝑇 a set of probabilities

that describe the chance to transitioning between states in 𝑆, 𝑅 : 𝑆 ×𝐴− > ℜ is a reward

function used to describe rewards from performing actions, Ω is a set of observations, 𝑂

being a conditional observation probability, and 𝛾 being a discount factor.

For instance, the example depicted in Figure 4 is a game that have been through

7 States, where each event, represented by black arrows, enables transitioning between

States. Each transition also has a value associated, represented by black numbers, that

indicates the probability of going from a State to another by performing its associated

event. The yellow arrows, on the other hand, indicate the reward of an event performed

in a State. For example, if an agent is reasoning in state 𝑠1 it can perform two actions

that can lead to state 𝑠4, receiving a reward of 5, and 𝑠2 with a probability of 0.4 and

0.6, respectively. It is important to note that it is not mandatory that every transition be

associated with a reward since it is unguaranteed that every event will lead to outcomes.

Figure 4 – Simplified Partially Observable Markov Decision Process example
with 7 states in 𝑆 as blue circles and 2 reward outcomes in yellow.

Source: By the Author.

From a POMDP perspective, the main objective of a reasoning process is to

maximize the overall reward of an agent during a Time Flow by deciding what actions

are most important to be performed. In a POMDP, the overall reward of an agent’s

performance is equal to the sum of all the intermediary ones obtained through its Decision

Steps over time by using Equation 1, where 𝑡 is the present Decision Step, 𝛾 being a scale

factor to discount the reward, and 𝑟𝑡 being the reward received by performing an action.

The 𝛾 variable is powered by 𝑡 giving more weight to outcomes that are closer to the end

3.2. Reasoning process 63

of a Time Flow.

𝐸 =
∑︁

𝑡

𝛾𝑡𝑟𝑡 (1)

Transitions in a POMDP can occur with a probability described as 𝑇 (𝑠′|𝑠, 𝑎), where

𝑠 is the current state, what the agent is seeing at the present, 𝑎 being the action performed

by the agent, and 𝑠′ being the new state obtained after performing 𝑎. This model is coded

probabilistically because it can be unguaranteed that the new state 𝑠′ will be achieved.

A POMDP also permits to predict a reward of a future state 𝑠′ by doing an observation

𝑂(𝑜|𝑠′, 𝑎) inside Ω, where 𝑜 ∈ Ω is the observed future reward from an environment 𝑠′.

3.2.3 Strategy as a POMDP path

The reasoning process generates a set of actions that an agent needs to perform

in order to maximize its overall reward over time, thus generating a path in a POMDP.

This path is composed of all actions and states that were performed and the agent went

through, respectively, and it is referenced in this research as a strategy. Behaviors of an

agent are accomplished by changing or adapting its strategy over time. The main problem

when dealing with the generation of strategies with a POMDP, to play a game, is that

they are not trustful since performing actions can not guarantee reaching desired states.

Consequently, every strategy that an agent can generate, through reasoning, represents a

blurry possibility from a Time Flow.

3.2.4 Observability and POMDP limitations

The observability of a Time Flow and a POMDP can be full or partial, where the full

observability means that every variable, event, logical rules from a Time Flow, transition

probabilities, rewards, states, are known, otherwise, it is partial. A full observability enables

an agent to know everything about the game, thus facilitating its reasoning by alleviating

the necessity in dealing with unknown information. On the other hand, when dealing with

a partial observability, the strategies that are generated by it are even more blurry and

can result in higher statistical fluctuations.

A Time Flow can have any size, what implies in an infinite number of states to

represent in a POMDP, thus generating a high demand in processing power to run a

reasoning process. Furthermore, it is also difficult to store an infinite amount of possible

64 Chapter 3. Agent Reasoning

state by hand, where the most used solutions involve state contractions, fusing states to

simplify the POMDP, in order reduce its complexity in terms of size. A major problem

when dealing with a POMDP to control an agent, is the lack of a mechanism, unbounded

from a labeling system, that creates new states if needed, that stems from the fact that it

is impossible to label an infinite number of states.

In order to deal with reward estimation, optimization, and also state labeling and

creation for adaptive learning, in this research the POMDP is simulated with a proposed

Adaptive Neural Network inspired on an ARAM. The ARAM neural network is based

on a theory called ART, where it specifies how the human brain stores and retrieves

information in a decentralized way to achieve not only ways to evoke memory but also

advanced cognition. With its mechanism, the proposed solution is capable to simulate each

POMDP state inside neurons.

65

4 THE ADAPTIVE RESONANCE THEORY

This chapter presents a background on the ART computational model and a fuzzy

Adaptive Neural Network capable of implementing it, the necessary tools to deploy the

HARP proposal, and also the theory behind all the proposed ANN to handle creative

thinking, memory representation, information retrieval, and prediction.

Adaptive neural networks, as the fuzzy Adaptive Resonance Associative Map ARAM

and fuzzy ARTMAP, are used in a variety of applications, ranging from computer vision

to agent controlling in games (CARPENTER; GROSSBERG; REYNOLDS, 1991; WANG;

TAN, 2015). Those networks enable an agent to adapt into various scenarios according to

the its needs and are well established computational models of The Adaptive Resonance

Theory. This behavior can be useful if the environment that interacts with the agent is

unknown or partially unknown. They are based on more than two ART systems that

communicate with each other to form an associative memory (TAN et al., 2008; TAN, 2004;

TAN, 1995), mapping an environment. Considering that the ARTMAP was introduced

first than the ARAM, in the rest of this document, an ART inspired neural network, that

uses more than one ART system, is referenced as a multi-channel ANN (Adaptive Neural

Network).

In its general form, depicted in Figure 5, the multi-channel ANN has two layers,

𝐹1 and 𝐹2. The 𝐹1 layer is called feature layer, where features are extracted from an

environment and arranged there in a coherent way inside the feature fields. Each feature

field inside 𝐹1 is represented by 𝐹 𝑐𝑖
1 , where 𝑖 ∈ [1, 𝑘], being 𝑘 the maximum number of

fields. In contrast, the 𝐹2 layer, called category layer, acts as a multidimensional pattern

holder where it has the function of linking all the 𝐹 𝑐𝑖
1 feature fields in 𝐹2 with neurons.

Each 𝐹 𝑐𝑖
1 also has an input field 𝑝𝑐𝑖

1 ∈ 𝐼 and an activity field 𝑥𝑐𝑖
1 ∈ 𝑋, where 𝐼 holds all

input fields and 𝑋 holds all activities from the feature layer. The input field 𝑝𝑐𝑖
1 receives

raw stimulus signals directly from the environment so they can be transformed into a

feature vector and transferred to the corresponding activity field 𝑥𝑐𝑖
1 for usage.

With respect to the 𝐹2 category layer, each neuron 𝑗 is coded as a set of weights

𝑊𝑗 ∈ 𝑊 𝑎𝑙𝑙, 𝑗 = 1, ..., 𝑡, where 𝑊𝑗 = {𝑤𝑐1
𝑗 , ..., 𝑤𝑐𝑖

𝑗 , ..., 𝑤𝑐𝑘
𝑗 } and 𝑊 𝑎𝑙𝑙 as the set of all neurons.

The variable 𝑡 is used to identify the neuron limit of the network, 𝑖 ∈ [1, 𝑘] the link to

the field 𝑐𝑖 inside 𝐹1 and k the total number of feature fields. An input vector is coded as

𝑝𝑐𝑖
1 ∈ 𝐼 = {𝑝1, ..., 𝑝𝑛} and an activity vector as 𝑥𝑐𝑖 ∈ 𝑋 = {𝑥1, ..., 𝑥𝑛} where 𝑛 is the total

66 Chapter 4. The Adaptive Resonance Theory

Figure 5 – Adaptive Resonance Associative Map architecture.

Source: By (TAN, 2004)

number of features coded by the field 𝑐𝑖. All those fields also need to use the complement

coding to prevent the code proliferation problem (CARPENTER; GROSSBERG; ROSEN,

1991; TAN, 1995; TAN, 1992; TAN, 2004). The complement prevents the network rapid

growth but its also provides an overhead of data equals to the size of each field. The full

mechanism of the multi-channel ANN can be observed in the literature typically described

as this five step routine: 1) activation; 2) inhibition; 3) readout; 4) resonance; and 5)

learning. This five step routine is presented in details on section 4.1.

4.1 Categorization mechanism

The network has two types of neurons, committed and non-committed. The com-

mitted neurons are used to represent already learned stimulus and the non-committed

neurons represent an empty or available space for learning. At its initialization, the network

has one non-committed neuron that can be used for learning. The five step routine of the

multi-channel ANN permits the cognitive code matching, learning and prediction given an

observed environment and it is described as:

1) Activation: Given the presentation of the activity vectors 𝑥𝑐𝑖 from all the

feature fields in 𝐹1 to the system, it computes 𝑡𝑗 ∈ 𝑇 described by Equation 2. 𝑇 will

hold the temperature or similarity between all 𝑤𝑐𝑖
𝑗 ∈ 𝑊𝑗 and all the presented 𝑥𝑐𝑖 ∈ 𝑋 in

relation to 𝑊𝑗 for each neuron 𝑗 ∈ 𝐹2, where the fuzzy AND operation 𝑎 ∧ 𝑏 = 𝑚𝑖𝑛(𝑎, 𝑏),

|𝐴| = ∑︀
𝑎𝑖. The constant 𝛾𝑐𝑖 ∈ [0, 1] is acting as a choice parameter to emphasize or not

the importance of the field 𝑐𝑖, and 𝛼𝑐𝑖 used to prevent division errors.

𝑡𝑗 ∈ 𝑇 =
𝑘∑︁

𝑖=1
𝛾𝑖 |𝑥

𝑐𝑖 ∧ 𝑤𝑐𝑖
𝑗 |

𝛼𝑐𝑖 + |𝑤𝑐𝑖
𝑗 |

(2)

4.1. Categorization mechanism 67

The Equation 2 is described by (CARPENTER; GROSSBERG; ROSEN, 1991;

CARPENTER; GROSSBERG; REYNOLDS, 1991; TAN, 1995; CARPENTER; GROSS-

BERG, 1988; TAN, 1992; TAN, 2004; WANG; TAN, 2015) as a fuzzy ART I operation. It

suffers from the over generalization problem, where the input 𝑥𝑐𝑖 can not be distinguished

coherently from the neuron weight 𝑤𝑐𝑖
𝑗 . Considering |𝑥𝑐𝑖 ∧ 𝑤𝑐𝑖

𝑗 | ≤ |𝑤𝑐𝑖
𝑗 |, there can be a

match or a higher value of similarity from completely different stimulus just because they

have the same length. It can generalize large amounts of data, but the lack of precision

does not make it profitable. To solve this problem, Equation 3 was used by the authors in

(WANG; TAN, 2015), and it is called fuzzy ART II.

𝑡𝑗 ∈ 𝑇 =
𝑘∑︁

𝑖=1
𝛾𝑖 𝑥𝑐𝑖.𝑤𝑐𝑖

𝑗

||𝑥𝑐𝑖||||𝑤𝑐𝑖
𝑗 ||

(3)

The operation 𝑎.𝑏 is the dot product between two vectors defined as ∑︀
𝑎𝑖𝑏𝑖 and the

||𝑎|| is the euclidean norm defined as
√︁∑︀

𝑎2
𝑖 . This second form for checking the similarity

is more consistent and it suffers less from over generalization. If analyzed in details, it

calculates the cos(𝜃) from the stimulus in 𝑥𝑐𝑖 and the neuron weight 𝑤𝑐𝑖
𝑗 . Despite being

more accurate than the fuzzy ART I for matching, it considers the angle between 𝑥𝑐𝑖 and

𝑤𝑐𝑖
𝑗 and thus it can output higher values of similarity from different vectors because they

have the same direction.

2) Inhibition: The code inhibition, in Equation 4, is used to select the most

promising neuron 𝑡𝐽 ∈ 𝐹2 as a possible match between the presented activity in relation

to all other neurons.

𝑡𝐽 = max{𝑡𝑗 : for all 𝑡𝑗 ∈ 𝑇} (4)

3) Readout: A readout or output value, computed by Equation 5, is a prediction

of the network upon each input presentation in 𝐼.

𝑥𝑐𝑖 = 𝑥𝑐𝑖 ∧ 𝑤𝑐𝑖
𝐽 , 𝑐𝑖 = 1, ..., 𝑘 (5)

The values computed by Equation 5 represent a generalized category close to the

received stimulus and the codified weight in the neuron 𝐽 . It can be used as the answer,

prediction or classification given an activity 𝑥𝑐𝑖. Another kind of readout can also be

68 Chapter 4. The Adaptive Resonance Theory

performed by following Equation 6, thus generalizing between the stimulus and the selected

neuron 𝐽 .

𝑥𝑐𝑖 = 𝑤𝑐𝑖
𝐽 , 𝑐𝑖 = 1, ..., 𝑘 (6)

4) Resonance checking: The resonance value 𝑚𝑐𝑖
𝐽 ∈ [0, 1] is calculated by Equa-

tion 7 and it does another verification inside the selected neuron 𝑡𝐽 to guarantee the

similarity. But it considers the existing difference when |𝑥𝑐𝑖| > |𝑤𝑐𝑖
𝐽 | in relation to 𝑋

instead of 𝑊 as presented by Equation 2. To be in resonance, all 𝑚𝑐𝑖
𝐽 for 𝑖 = 1, ..., 𝑘 inside

the neuron 𝐽 need to be greater than a precision value called a vigilance measured by

𝜌𝑐𝑖 ∈ [0 1], otherwise a reset occurs. The reset just set 𝑡𝐽 = 0, preventing it to compete

again, thus a new neuron can be checked inside 𝑇 .

𝑚𝑐𝑖
𝐽 =

|𝑥𝑐𝑖 ∧ 𝑤𝑐𝑖
𝑗 |

|𝑥𝑐𝑖|
> 𝜌𝑐𝑖 (7)

In order to represent a resonated neuron, a boolean 𝑦𝑗 ∈ [0, 1] is stored inside the

𝑌 ∈ 𝐹2 vector, where each neuron 𝑗 has one 𝑦𝑗 associated with it. When 𝑦𝑗 = 1, then the

neuron 𝑗 is resonating, otherwise 𝑦𝑗 = 0. The process of checking the resonance could

soften or alleviate the existing over generalization problem into the inhibition and readout

steps, but it is used if the network is in learning mode, in other words, if it needs to write

data directly inside the neurons.

5) Learning: If the neuron J passes through the resonance checking it can be used

to learn the new stimulus received from 𝑋. All the 𝑤𝑐𝑖
𝐽 ∈ 𝑊𝐽 needed to be adjusted by

Equation 8 is known as a fuzzy ART I learning method, where 𝛽𝑐𝑖 ∈ [0, 1] is the learning

rate of the field 𝑐𝑖. This method produces a neuron that can be, again, over generalized,

because it is updating the old weight 𝑤𝑐𝑖
𝐽 by values that will always be less or equal |𝑤𝑐𝑖

𝐽 |,

thus never fully representing the stimulus inside 𝑥𝑐𝑖. This implies that the neuron can

always be generalized but never specialized as pointed out by (TAN et al., 2008; TAN,

1992; TAN, 2004; WANG; TAN, 2015).

𝑤𝑐𝑖
𝐽 = (1− 𝛽𝑐𝑖)𝑤𝑐𝑖

𝐽 + 𝛽𝑐𝑖(𝑥𝑐𝑖 ∧ 𝑤𝑐𝑖
𝐽) for all i = 1, ..., k (8)

To alleviate the over generalization problem in the learning step, the fuzzy ART

II operation in Equation 9 presented by (WANG; TAN, 2015) can be used instead. This

4.2. Perfect Miss Match 69

fuzzy ART II operation guarantees the raw integrity of the received stimulus when codified

into the neurons weights 𝑤𝑐𝑖
𝐽 for all 𝑖 = 1, ..., 𝑘.

𝑤𝑐𝑖
𝐽 = (1− 𝛽𝑐𝑖)𝑤𝑐𝑖

𝐽 + 𝛽𝑐𝑖𝑥𝑐𝑖 for all i = 1, ..., k (9)

4.2 Perfect Miss Match

The Perfect Miss Match is a situation where the predicted stimulus comes from a

neuron that is not suitable to represent it. It is important to use this method of detecting

miss matches when the implemented model that uses a ANN needs to guarantee that each

instance of a field 𝑖 can be part of exactly one and only one neuron. Its detection occurs

when a prediction, where the 𝑚𝑐𝑖
𝐽 for the selected field 𝑖, is equals to 1, and for all the

other fields, 𝑚𝑐𝑘
𝐽 for all 𝑘 are below of the specified 𝜌𝑐𝑖 parameter. After the detection of a

Perfect Miss Match, a ANN can handle it with a special learning method called Overwrite

described by Equation 10.

𝑤𝑐𝑖
𝐽 = 𝑥𝑐𝑖 for all i = 1, ..., k (10)

This learning method replaces the method described by Equations 8 and 9, it also

guarantees that each distinct instance of a field 𝑖 will belong to 1 neuron, thus turning a

ANN suitable to store function values.

4.3 Adaptive Vigilance

A vigilance parameter is what enables the ANN to perform the Resonance checking

step from its routine and identify the similarity of the received stimulus and the neurons

weights in each field separately. This routine is controlled by 𝜌𝑐𝑖 parameters following

Equation 7. The problem of using this method turns up when performing the Resonance

checking step, neurons that are unsuitable to represent 𝑋 are identified more often as

viable to be used by the Learning step. To tackle this problem, the Adaptive Vigilance can

be used to tell to the searching process that better solutions could be found by turning the

selection process tighter and forcing the network to either select a non commited neuron

or to detect a Perfect Miss Match. It’s dynamics are controlled by raising the vigilance

70 Chapter 4. The Adaptive Resonance Theory

parameter with Equation 11 if 𝑚𝑐𝑖
𝐽 > 𝜌𝑐𝑖 and if the neuron 𝐽 does not resonate,

𝜌𝑐𝑖 = 𝜌𝑐𝑖 + 𝑎𝑙𝑝ℎ𝑎𝑣𝑖𝑔𝑖𝑙𝑎𝑛𝑐𝑒 (11)

where the variable 𝑎𝑙𝑝ℎ𝑎𝑣𝑖𝑔𝑖𝑙𝑎𝑛𝑐𝑒 is a raising step slightly higher than 0. This process can

also be done by a scaling term with Equation 12 if preferred.

𝜌𝑐𝑖 = 𝜌𝑐𝑖 + 𝜌𝑐𝑖 * 𝑎𝑙𝑝ℎ𝑎𝑣𝑖𝑔𝑖𝑙𝑎𝑛𝑐𝑒 (12)

If a resonating neuron could not be found by the end of the Resonance checking

process, this method will force the Fuzzy ANN to detect a Perfect Miss Match or to create

a new neuron for learning since at the end of its execution the selected parameter 𝜌𝑐𝑖 will

converge to 1.

71

5 THE HONING THEORY

In this chapter, it is presented The Honing Theory os creativity and how one of

its aspects, the surprise, can be represented by a Bayesian surprise model. The Honing

Theory is used in this research as a basis which the HARP was built and it helps the

deployed agents to generate creative strategies during the POMDP optimization process

with the concept of surprise and novelty.

The Honing Theory describes creativity as the interaction between a human and its

environment, where its capability in generating ideas will adapt according to experience.

Furthermore, it also describes that a creative idea is conceived by a search procedure

composed by two phases: Associative; and Analytic. This searching procedure is called

associative thinking and analytic thinking, respectively, and they permit to activate

concepts or create new ones representing creative ideas (GABORA, 2010a).

The process described by The Honing Theory assumes that concepts are composed

by microfeature, where each microfeatures, inside the conceptual space is represented by

interconnected neurons clusters, in the brain, that are called Neural Cliques. For instance,

as showed in Figure 6, the concept of a tool is represented by the Neural Clique composed

of the microfeatures: Black, that represents its color, Screw, representing its external

relation, Long, that represents its size, Cable, representing it has a cable, Head Driver,

that represents is ability to handle screw heads. This conceptual space can be compared

to the ART’s mechanism used to represent symbols, thus relating models and representing

reality.

Figure 6 – The Honing Theory conceptual space.

Source: By the Author.

72 Chapter 5. The Honing Theory

The associative thinking, according to The Honing Theory, permits the brain to

activate neural cliques that can be interrelated through microfeatures, as the tool and screw

neural cliques depicted in Figure 6, and it occurs until the brain converges into a single

neural clique as a response. During the associative thinking, the brain can activate its

analytical thinking to analyze the information inside the already activated neural cliques,

thus helping to decide what cliques it should activate next. This ability to alternate

between phases is defined as a Contextual Focus, where the brain decides between staying

focused on various cliques simultaneously, in order to activate more of them, or in focusing

into a single clique, helping to determine what it should do with the already activated

ones. Each clique obtained as a response is called neurd.

Figure 7 – The Honing Theory process as a neural clique expansion.

Source: By the Author.

For instance, the idea about a screw at the right side of Figure 7 was generated

by firstly receiving an external stimulus. This external stimulus was obtained perceiving

objects, from an environment, them decomposing their essence into microfeatures. All

microfeatures related to those objects were activated inside the brain and after their

activation the neural cliques can be identified as the red, gray and brown transparent

hulls. The set of all activated cliques is called World View and it represents what the brain

is understanding at the moment of the observation. Those neural cliques are memories

retrieved by an associative phase, consequently an analytical phase is activated to identify

which cliques should be also activated or inhibited. For this example, the analytic phase

5.1. Potentiality State 73

identified that the microfeatures Head driver and Screw, illustrated in yellow, are shared

between other neural cliques, that represents other concepts, thus it decided to propagate

their activation into them to see if something new can be discovered. This new clique,

representing a Screw, obtained from the process is called neurd and it is used to compose

a creative idea. This idea is assembled fusing the set of the received external stimulus,

that shares microfeatures with the activated neurds.

5.1 Potentiality State

During the Contextual Focus, various neural cliques can be activated or inhibited

and all the options that are available constitute a set of possible cliques to handle. This

state, where many options are available, is called by the theory as a Potentiality state

and it is governed by the brain’s analytic phase relying mechanisms (GABORA, 2010a).

Unfortunately, there are no explanations from the theory on how exactly it works inside

the human brain, thus turning harder to create a computational model that can be directly

mapped on top of a neural network or an ART system. Nevertheless, it seems that a

decision making algorithm and an optimization method, as the one presented in Section 6

from the FALCON architecture, should help in solving the problem by experimenting an

idea, seeing what will happen and evaluating it, thus associating the obtained value to its

relying clique in order to facilitate decision making. Unfortunately, experimentation can

handle utility values, thus the process can know if an idea is good or bad, but it does not

measure how much that idea is unusual or novel in order to be classified as creative or not.

5.2 Bayesian surprise as a novelty metric

Creative ideas have to be novel and appropriate (BODEN, 2004). In order to

measure novelty, there are few metrics based on concepts of surprise, unexpectedness,

expectation that are commonly used (GRACE; MAHER, 2014). There are no consensuses

on how to measure the novelty factor of a concept in relation to others inside a conceptual

space, but the notion of surprise, novelty, can be used as a spacial distance that will tell

how much distant the observation is from what is already known. As shown by the left

box in Figure 8, the distance from a population’s centroid can certainly be used as a

novelty metric, because it is measuring how far the observed dot 𝑐𝑖 is from others. However,

this solution does not represent a true novelty since the dispersion of elements on that

74 Chapter 5. The Honing Theory

population can influence how far their elements will be from the measured observation

𝑐𝑖, as shown by the right box in Figure 8. To tackle that problem, the Bayesian surprise

calculates the spacial distance from objects considering variance of a population, measuring

the novelty of an observation.

Figure 8 – Bayesian Surprise concept as the distance from a sample’s centroid
considering dispersion.

Source: By the Author.

5.3 Bayesian surprise

In order to a metric to be applied over an idea or a concept from a conceptual space,

first they need to be transformed into a feature vector. Considering all the similarities of a

conceptual space with a symbolic representation and definition from Chapter 4, all concepts

from a conceptual space are treated as symbols, thus they can be directly assembled in

a feature vector to compute any spacial metric. With the numerical representation of

concepts, the Bayesian surprise (BALDI; ITTI, 2010) can evaluate how much a feature

from its feature vector 𝐶 = {𝑐𝑖, ..., 𝑐𝑛}, being 𝑛 the total number of features, is different

from an already established population 𝑃 = {𝑃𝐸1, ..., 𝑃𝐸𝑚}, where each 𝑃𝐸𝑖 ∈ 𝑃 is a

vector of the form 𝑃𝐸𝑖 = {𝑝1, ..., 𝑝𝑛}. In its simplified form, it is defined by Equation 13,

where 𝑐𝑛𝑒𝑤
𝑖 is the feature 𝑖 from 𝐶 that will be compared, 𝜎2

𝑖 the variance of the feature 𝑖

in 𝑃 and �̄�𝑖 being the arithmetic mean of the feature 𝑖 from 𝑃 .

𝑆(𝑐𝑛𝑒𝑤
𝑖) = 𝑁

2𝜎2
𝑖

[𝜎2
𝑖 + (𝑐𝑛𝑒𝑤

𝑖 − �̄�𝑖)2] (13)

When computing the surprise factor or how novel a feature is compared to what

is already known, it seems feasible in using the Bayesian surprise since it considers the

distance as [𝜎2
𝑖 + (𝑐𝑛𝑒𝑤

𝑖 − �̄�𝑖)2], however a scaling factor described as 𝑁
2𝜎2

𝑖
is also used to

scale its results based on the inverse of the variance from a population. By accomplishing

5.3. Bayesian surprise 75

that, the computed surprise will be scaled to receive even higher values when considering

a high variance and in low values when considering a low variance, where the variable 𝑁

is used to define the starting point or number in which the measured distance will start to

be scaled up or scaled down. This method is used in this research to compute not only

the utility value from experimentation considering an environment 𝑒, from a simulated

POMDP, but to calculate the novelty of a decision.

77

6 FUSION ARCHITECTURE FOR LEARNING COGNITION AND NAV-

IGATION

This last background chapter presents the necessary background to understand the

FALCON that is used to permit an agent to reason about what it is experiencing and to

recognize the existence of the Time Flow. This architecture is used in this research to

simulate a POMDP that will help the agent to perform its creative reasoning.

The Adaptive Neural Networks, as illustrated in Figure 9, is any neural network

that works with representative fields, as discussed in Section 4. There are some main

ANNs referenced in this work. They are the ART system, ARTMAP and ARAM. The

deployed solutions for all HearthBots uses aspects of each one of them. Those aspects, that

involve mapping the input stimulus into fields, learning and adapting them, are discussed

in Section 4.

Figure 9 – Adaptive Neural Networks and FALCON interaction.

Source: By the Author.

The FALCON is used to enhance the representation, of stored information inside an

ANN, to simulate a POMDP. As showed in Figure 9, a FALCON architecture communicates

with an ANN to realize how information is being stored inside of it. It can be interpreted

as a reinforcement learning handler, while a ANN handles the supervised and unsupervised

learning. For instance, the FALCON architecture can be described as reactive, that senses

and responds based on information gathered from two States, the present and immediate

future, that considers as many future States as it wants in order to take a decision through

its mechanisms. The decision taken will tell to the system how it should handle information

to reason and how to maintain the integrity of the simulated POMDP. It is important to

note that, the FALCON architecture can be deployed with other kinds of neural networks

and is not limited exclusively to the ANN family.

78 Chapter 6. Fusion Architecture For Learning COgnition and Navigation

A FALCON is an architecture that enables an agent to sense, think and act in a

dynamic environment. It is assembled with three fields on the F1 layer of the ANN, E,

A and R. Where E represents all the environment, A all the possible actions that the

agent can perform and R the reward received by the agent when performing the action

expressed by A. The environment E is composed by {𝑒1, ..., 𝑒𝑛}, where 𝑛 represents the

total amount of variables used to describe the environment. According to the FALCON

architecture, an action is described by a binary array composed by 𝑚 actions, thus A

needs to be in a binary array form, where 𝐴 = {𝑎1, ...𝑎𝑚}, 𝑎 ∈ [0, 1], and 𝑚 is the total

amount of actions that the agent can perform. The R field is used to store a reward, and

is typically constructed with the form 𝑅 = {𝑟, 1− 𝑟}, where 𝑟 is the immediate reward

received after performing an action represented by A, and 1− 𝑟 the complement of 𝑟. The

complement of the reward is used in a FALCON architecture by the reactive and temporal

interaction models proposed by (WANG; TAN, 2015) and described in details in Sections

6.1 and 6.2.

6.1 Reactive Model

The reactive model consists in sensing the environment through each input signal

𝑒𝑖 ∈ 𝐸, and then select an action 𝑎𝑖 ∈ 𝐴 to be performed in search of a reward 𝑟. It is

divided into two parts, where the agent firstly seeks for a valid action to be performed,

From Sensory To Action, and secondly when the agent performs the selected action and

then presents the environment feedback to the ANN to be learned, From Feedback To

Learning.

6.1.1 From Sensory To Action

In order to select an action, an agent presents its current view of the environment

in the form of a vector to the ANN. This environment vector is coded inside a field from

the 𝐹1 feature layer. After building the environment vector inside 𝐸, the agent needs to

speculate what he requires to accomplish given an observation of an environment 𝐸. In

order to tackle that, it asks for the ANN what action to perform through a Direct Acess

Method.

The Direct Acess Method configures the action vector 𝐴 = {𝑎1, ..., 𝑎𝑚} with each

𝑎𝑖 ∈ 𝐴 = 1. This action vector 𝐴, from the Reactive Model, represents an action mask that

6.1. Reactive Model 79

codes all the possible actions that have been executed since the first observation of the

environment 𝐸. The same method is used to build the reward vector 𝑅, where 𝑅 = {1, 1}.

After using the Direct Acess Method, the agent presents the three coded vectors,

𝐸, 𝐴 and 𝑅 to the ANN as fields from the 𝐹1 layer to fulfill a prediction. The coded

vectors will force the network to predict an action and reward vector that will subscribe

the previously configured vectors 𝐴 and 𝑅. The action 𝑎𝑠 that will be performed by the

agent is finally obtained from the action competition method following Equation 14.

𝑎𝑠 = max{𝑎𝑖 : for all 𝑎𝑖 ∈ 𝐴} (14)

6.1.2 From Feedback to Learning

After executing the From Sensory To Action part, the agent then performs the

selected action 𝑎𝑠 and waits for the environment to respond. As specified by the FALCON

algorithm, the agent needs to wait the environment in which it is interacting to respond.

This could be wasteful, considering that it could take this extra time to perform other

tasks. A response from the environment is coded inside a variable 𝑟𝑒 and then it needs to

be interpreted, and coded as a reward to be stored in 𝑟, by an objective function 𝑓 that

needs to be specified by the programmer. This interaction will generate a new environment

𝐸𝑛𝑒𝑤, assuming that the action performed by the agent can eventually modify the present

environment 𝐸. Finally, the agent needs to code the old environment 𝐸, the performed

action 𝑎𝑠 and the received reward 𝑟 into 𝐸, 𝐴 and 𝑅 for learning, where 𝐸 takes no change,

𝐴 = {𝑎1, ...𝑎𝑚}, where each 𝑎𝑖 = 0 and 𝑎𝑠 = 1, and 𝑅 = {𝑟, 1 − 𝑟}. Those three coded

vectors are presented to the ANN for learning.

6.1.3 Reinforcement learning

When learning in the Reactive Model, the ANN can use two kinds of reinforcement

learning techniques. One of them is represented by the Fuzzy ART operations that stamps

the stimulus from 𝐸, 𝐴 and 𝑅 inside the selected neuron from the learning step described

in Section 4 and the second one is used to control the quality of a decision from the

agent based on the predicted action 𝑎𝑠 that will be performed on the environment 𝐸.

This second form of reinforcement learning is divided into: 1) Neuron Erosion; 2) Neuron

Reinforcement; and 3) Neuron Decay. Each part of the reinforcement procedure relies on a

80 Chapter 6. Fusion Architecture For Learning COgnition and Navigation

confidence vector 𝐶, where 𝐶 = {𝑐1, ..., 𝑐𝑛}, being 𝑛 the total number of neurons. Each of

the 𝑐𝑖 ∈ 𝐶 is a value that ranges inside [0, 1], being 0 a neuron with 0% confidence and 1

being a neuron that has a 100% confidence that its response is accurate.

6.1.4 Neuron Erosion

The Neuron Erosion is applied when the reward 𝑟, interpreted by the objective

function 𝑓 , is lower than a previous 𝑟𝑜𝑙𝑑 obtained and stored from the immediate past

action performed by the agent. The erosion tells that the performed action 𝑎𝑠, selected

from the From Sensory To Action, caused a negative impact on the overall agent’s rewards

over time. This step, as being reactive, calculates the erosion considering one interaction

in the past. After the detection of an erosion with the condition 𝑟 ≤ 𝑟𝑜𝑙𝑑, the learned

action mask 𝐴, from the Feedback to Learning step, suffers a reset and is configured as

𝐴 = {𝑎1, ..., 𝑎𝑚}, where each 𝑎𝑖 = 1 and 𝑎𝑠 = 0. This reset configuration associates a mask

with 𝐸 that forces the agent to explore other actions when facing the same environment

overtime, due to the fact that the action 𝑎𝑠 is selected with the max operator by the

Equation 14,

𝑐𝐽 = 𝑐𝐽 − 𝑐𝐽 * 𝛼𝑒𝑟𝑜𝑠𝑖𝑜𝑛 (15)

where the variable 𝛼𝑒𝑟𝑜𝑠𝑖𝑜𝑛 represents the decay rate of the confidence level for the repre-

sented neuron 𝐽 .

The reward field 𝑅 suffers the same reset configuration, where 𝑅 = {1− 𝑟, 𝑟}. It is

essential to note that the reset configurations inside 𝐴 and 𝑅 replace the 𝐴 and 𝑅 inside

the same learning method from Section 6.1.2. After that is done the recently computed

vectors 𝐴 and 𝑅 alongside 𝐸 are presented to the ANN for learning. After the learning

gets completed, the selected neuron 𝐽 from the Inhibition step from the categorization

mechanism in Section 4.1 is used to update its correspondent inside the confidence vector

𝐶 with Equation 15.

6.1.5 Neuron Reinforcement

Neuron reinforcement occurs when a temporal change happens in 𝑟, after receiving

a positive environment feedback. To calculate that temporal change, the variable 𝑟𝑜𝑙𝑑 is

used on the condition 𝑟 > 𝑟𝑜𝑙𝑑, as in the Neuron Erosion, and it is also calculated based on

6.2. Temporal Difference Model 81

the immediate past action performed by the agent. Differently from the Neuron Erosion,

the reinforcement updates the confidence vector 𝐶 and leaves the learning process as

presented in Section 6.1.2. A reinforcement is done after presenting the vectors 𝐸, 𝐴 and

𝑅 to the ANN for learning. The selected neuron 𝐽 , also from the Inhibition step from

the categorization mechanism in Section 4, is used to update its correspondent inside the

confidence vector 𝐶 with Equation 16.

𝑐𝐽 = 𝑐𝐽 + 𝑐𝐽 * 𝛼𝑟𝑒𝑖𝑛𝑓𝑜𝑟𝑐𝑒 (16)

As in the Neuron Erosion, the variable 𝛼𝑟𝑒𝑖𝑛𝑓𝑜𝑟𝑐𝑒 represents the rate of change in

confidence on the selected neuron 𝐽 .

6.1.6 Adaptive Cognitive Code Pruning

An adaptive neuron pruning occurs when the confidence level of a neuron 𝑐𝑖 is

below a threshold 𝑡𝑝𝑟𝑢𝑛𝑖𝑛𝑔. This threshold is given a priori and represents the minimum

level of confidence that a neuron needs to have in order to be viable. If the neuron

𝑖 confidence 𝑐𝑖 < 𝑡𝑝𝑟𝑢𝑛𝑖𝑛𝑔, then the neuron is marked to be removed or reused by the

network. Considering that neurons confidence suffers changes by the learning procedure,

the neuron pruning could occur a few times depending on how well the agent is doing in

an environment. This implies in the usage of the Neuron Decay, a function that decreases

periodically the confidence level of every neuron represented inside 𝐶. The Neuron Decay

is calculated by the Equation 17, and it permits the pruning to occurs often,

𝑐𝑖 = 𝑐𝑖 − 𝑐𝑖 * 𝛼𝑑𝑒𝑐𝑎𝑦 forall 𝑐𝑖 ∈ 𝐶 (17)

where the variable 𝛼𝑑𝑒𝑐𝑎𝑦 represents the decay rate of each neuron. It is important to note

that the neuron pruning relieves the network from non-reliable neurons, that could lead

the agent to a bad decision when selecting an action 𝑎𝑠, and also reduces the size of the

network in terms of space occupied by all the stored neurons.

6.2 Temporal Difference Model

A temporal difference model inside a ANN was firstly introduced by (WANG;

TAN, 2015), where the authors propose a FALCON architecture that incorporates the

82 Chapter 6. Fusion Architecture For Learning COgnition and Navigation

Q-Learning mechanism inside its dynamics. This model was incorporated to deal with

the problem of delayed rewards, received several steps in the future, that the Reactive

Model could not deal with since it calculates the temporal difference based on one step

to adjust the neurons confidence level. When performing with Q-Learning, the FALCON

model codifies each environment as the Reactive Model, but it uses one neuron per action

instead of an action mask. With this representation, the Q-Learning method can be applied

directly to the FALCON model to calculate Q values with the function 𝑄(𝑠, 𝑎), where 𝑠

represents the current environment and 𝑎 the action that was performed on 𝑠. Each 𝑄(𝑠, 𝑎)

replaces the immediate reward inside the 𝑅 field and its value represents an entrance on a

virtual Q-Learning table created by the network’s neurons.

6.2.1 From sensory to Action with Q-Learning

The prediction process for the Q-Learning method starts by presenting to the

ANN the environment vector 𝐸 that represents the state 𝑠, the selected action vector

𝐴 = {𝑎1, ..., 𝑎𝑚}, where 𝑚 is the total number of available actions, 𝑎𝑖 ∈ 𝐴, 𝑎𝑖 = 1 and for

each other 𝑎𝑗 ∈ 𝐴|𝑎𝑗 ̸= 𝑎𝑖, 𝑎𝑗 = 0, and 𝑅 = {1, 1} with the Direct Code Access method to

request a prediction. This way of coding fields inside the 𝐹1 layer of the ANN codes each

neuron as a virtual state of a Partially Observable Markov Decision Process, thus being

possible to store each 𝑄(𝑠, 𝑎) as transition values from the current state 𝑠 to a new state

𝑠′.

The 𝑄(𝑠, 𝑎) function value is obtained from the predicted reward field during the

presentation of 𝐸, 𝐴 and 𝑅. This predicted 𝑄(𝑠, 𝑎) value is then used to select an action

𝑎𝑠 ∈ 𝐴 to be performed by the agent through an Action Selection Policy, thus resulting

in a direct interaction with the environment 𝐸 during its presentation. That interaction

leads to a reward, response from the environment, that is used to update the recently

predicted 𝑄(𝑠, 𝑎). It is important to note that, predicted 𝑄(𝑠, 𝑎) values obtained from

non-committed neurons, blank neurons inside the ANN, need to be initialized for the

algorithm to work properly. The initialization is accomplished by Equation 18, where each

𝑄(𝑠, 𝑎) from non-blank neurons is assigned with the value 1
2 ,

𝑄(𝑠, 𝑎) = 𝑟1∑︀𝑘
𝑖=1 𝑟𝑖

(18)

where 𝑟1 ∈ 𝑅 is a recently predicted 𝑄(𝑠, 𝑎) and 𝑟2 ∈ 𝑅 the complement, described as

6.2. Temporal Difference Model 83

1−𝑄(𝑠, 𝑎), of 𝑄(𝑠, 𝑎) to be used as a flag that enables the identification of a prediction

from a non-committed neuron, and 𝑘 being the total amount of variables inside the field.

For instance, if a predicted 𝑅 = {1, 1}, then the calculated 𝑄(𝑠, 𝑎) will be initialized with

the value 1
2 as already pointed out.

6.2.2 Value Estimation

A value estimation is what permits the ANN to calculate temporal differences

from a 𝑄(𝑠, 𝑎) to 𝑄(𝑠′, 𝑎′), where 𝑠 is the current environment, 𝑎 the action that was

performed on 𝑠, 𝑠′ the generated environment after performing the action 𝑎 and 𝑎′ the

action selected to be used as a guess during the presentation of 𝑠′. This guess represents

what future action the agent want to use in order to calculate its temporal difference, thus

the result of the algorithm will rely upon the Action Selection Policy for 𝑎 and 𝑎′. This

method enables the agent to update its virtual 𝑄 values table, thus it can be considered

as a complement learning operation from the learning process in a Temporal Difference

FALCON. All estimations from a temporal difference are calculated with Equation 19,

Δ𝑄 = 𝛼 * 𝑇𝐷𝑒𝑟𝑟 (19)

where 𝛼 ∈ [0, 1] represents the Q-Learning rate and 𝑇𝐷𝑒𝑟𝑟 being the temporal difference

error calculated with Equation 20. The 𝑇𝐷𝑒𝑟𝑟 can be calculated by two ways, the Q-

Learning and the State Action Reward State Action SARSA, both are presented below.

Q-Learning: The temporal FALCON method relies on estimating the 𝑄(𝑠, 𝑎) with

the assistance of an Action Selection Policy to select the action 𝑎 to be performed during

the presentation of the environment 𝑠. After performing the selected action 𝑎, the agent

will cause a change on the environment 𝑠 that will lead to a 𝑠′. This 𝑠′ is then, used to

estimate the future 𝑄(𝑠′, 𝑎′). The 𝑎′ is selected in a such a way that maximizes 𝑄(𝑠′, 𝑎′) to

the highest value possible, this can be seen as the max operator from Equation 20,

𝑇𝐷𝑒𝑟𝑟 = 𝑟 + 𝛾 *max
𝑎′∈𝐴′

𝑄(𝑠′, 𝑎′)−𝑄(𝑠, 𝑎) (20)

where 𝑟 is the immediate reward received from the environment after the execution of the

selected action obtained from the process described in Section 6.2.1, 𝛾 ∈ [0, 1] being a

discount parameter that scales the temporal difference, and max𝑎′∈𝐴′ the best action 𝑎′ to

be performed during the presentation of the environment 𝑠′.

84 Chapter 6. Fusion Architecture For Learning COgnition and Navigation

SARSA: The SARSA method, represented by Equation 21, is based on changes

caused by actions selected from an Action Selection Policy. This implies on not selecting

𝑎′ based on a max operator as showed in Equation 20. Instead, it will always calculate

𝑄(𝑠′, 𝑎′) based on a selected action that will be performed during the presentation of an

environment 𝑠′,

𝑇𝐷𝑒𝑟𝑟 = 𝑟 + 𝛾 *𝑄(𝑠′, 𝑎′)−𝑄(𝑠, 𝑎) (21)

where 𝑟 is also the immediate reward received after 𝑎 being performed, as in the Q-Learning,

and 𝛾 ∈ [0, 1] the discount parameter to scale the temporal difference. The SARSA method

is also called the On-Policy stemmed from the fact that it will calculate the temporal

difference based on the decision of an Action Selection Policy.

6.2.3 Bound rules

𝑄 values stored inside neurons may be outside of the limits, typically from the

working interval [0, 1] in ART systems, and thus bounding rules need to be applied. Two

common rules can be used: Threshold and Self Scaling. The Threshold rule uses the

Equation 22 to limit the calculated 𝑄 values inside the working interval.

𝑄(𝑠, 𝑎) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1 if 𝑄(𝑠, 𝑎) > 1

0 if 𝑄(𝑠, 𝑎) < 1

𝑄(𝑠, 𝑎) otherwise

(22)

The problem with the Threshold is that occasionally a meaningful 𝑄 value can

went out of its bounds, thus generating overgeneralized responses based on ambiguous 𝑄

values. To solve this, the Self Scaling could be used instead, where the 𝑄 values will be

self scaled by Equation 23.

𝑄(𝑠, 𝑎) = 𝛼 * 𝑇𝐷𝑒𝑟𝑟 * (1−𝑄(𝑠, 𝑎)) (23)

This method can be applied in both Q-Learning value estimation methods, Q-Learning

and SARSA and it will force 𝑄(𝑠, 𝑎) to a self-scaling value inside the working interval

without cutting meaningful 𝑄 values out of the bound. It is important to note, as said by

6.2. Temporal Difference Model 85

(WANG; TAN, 2015), that the predicted 𝑄 values need to be from the network and not

from an external data structure to ensure its proper learning.

6.2.4 From Feedback to Q-Learning

The learning process is accomplished by presenting to the ANN the updated 𝑄(𝑠, 𝑎)

obtained from Equation 24 along side with the environment vector 𝐸 that represents 𝑠

and the action vector 𝐴 assembled to represent the selected action 𝑎,

𝑄(𝑠, 𝑎) = 𝑄(𝑠, 𝑎) + Δ𝑄 (24)

where 𝑠 is the current state in case of Q-Learning and the old state in case of SARSA, the

selected action vector 𝐴 = {𝑎1, ..., 𝑎𝑚}, where 𝑚 is the total number of available actions,

𝑎𝑖 ∈ 𝐴, 𝑎𝑖 = 1 and for each other 𝑎𝑗 ∈ 𝐴|𝑎𝑗 ̸= 𝑎𝑖, 𝑎𝑗 = 0, and 𝑅 = {𝑄(𝑠, 𝑎), 1−𝑄(𝑠, 𝑎)}.

For instance, the 𝑄(𝑠, 𝑎) complement inside the 𝑅 field is used to identify a prediction

from a non-committed neuron as already pointed in Section 6.2.1. The 𝑅 field is configured

to hold the recently calculated 𝑄 value to be learned using the ANN five step routine

described in Section 4.

Part II

Creative agent reasoning through adaptive neural networks

89

7 COMPUTATIONAL MODEL OF THE HONING THEORY AND THE

HONING ADAPTIVE RESONANCE PROCESS

In this Chapter, the proposed symbolic computational model of The Honing Theory

is presented. To first define how a computational system of it should behave, it is important

to know how to represent information from its conceptual space. It stems from the fact

that The Honing Theory operates within a conceptual space made of microfeatures. To

tackle this problem, in this research a conceptual space should be assembled as a symbolic

set, made of symbols, where each symbol is a string that represents an abstraction of an

object in reality. The semantic representation is achieved by a Honing Network, that uses

ontologies, based on semantic networks and frames, to represent semantics.

Both The Honing Theory and The Adaptive Resonance Theory describe how

memories are retrieved and assembled from different points of view, however, they have

much in common, for example, their neuron activation and retrieval mechanism. In this

chapter, it is also proposed the HARP (Honing Adaptive Resonance Process), where

creative ideas are generated with a FALCON architecture and two ANNs that are able

to simulate aspects of proposed computational model of The Honing Theory to deploy

emergent creative thinking into machines.

7.1 Conceptual space of vertexes for analytic and associative phases

The Honing Theory works inside a conceptual space made of symbols, that represents

microfeatures, and its objective is to generate a creative idea. There are no current

implementations of it to this date, and is proposed in this research that its process

should be modeled and implemented as a searching heuristic that works with a semantic

representation defined as a Honing Network, assembled with graphs, like semantic networks

and ontologies. The proposed model consists in receiving data from an environment 𝐸,

organizing that data into understandable symbols set 𝑆 = {𝑠1, ..., 𝑠𝑛} that represents the

conceptual space, where 𝑠𝑖 ∈ 𝑆 is associated with a vertex 𝑣𝑖 from a Honing Network with

a mapping function 𝑓 : 𝑉 → 𝑆, and 𝑛 being the total amount of microfeatures observed

for all objects on 𝐸. As shown by the example depicted in Figure 10, it is proposed that

the search procedure should work in associative and analytic modes that encompasses all

the theory aspects on how an idea is generated.

The process showed in Figure 10 starts by receiving microfeatures as external

90Chapter 7. Computational Model of The Honing Theory and The Honing Adaptive Resonance Process

Figure 10 – Honing Theory proposed process with analytic and associative
phases.

Source: By the Author.

stimulus and activating vertexes from the conceptual space. The relying Honing Networks,

that are directly connected to the activated vertexes, are fully retrieved as neural cliques

and used to start the associative mode. As accomplished by the Associative Phase in

Figure 10, the activated Honing Networks are used to trigger signals to vertexes from

the conceptual space, inside a green hull, that represent a relationship between Honing

Networks, those vertexes are defined as bridges. After activating all Bridges, new Honing

Networks are retrieved as neurds. Moreover, when in the analytic mode, the activated

neurds passes through a process of inhibition, and a few Honing Networks stay active.

Those who stayed will be used to trigger a new associative phase as activated cliques. The

process finishes when reaching a point without any bridge to activate or by a predetermined

iteration limit.

7.1.1 Honing Network as unstructured information

An easy way to represent neural cliques are using semantic networks, where each

semantic network can share its vertexes representing large amounts of information in a

compact way. The problem when using a searching heuristic, that seeks by vertexes, to deal

with such structures is the lack of a naive way in dealing with cycles and undirected edges.

For example, on the graph depicted in Figure 11 representing a chair and a prosthetic

leg, a possible searching, starting from the vertex associated with the symbol chair to

reach prosthetic, could be accomplished with a Depth First Search starting at chair until

reaching the bottom, at Leg, and then seeking for parents until reaching prosthetics. This

kind of search procedure will contribute to the need of linking vertexes by undirected

edges accessing parents, thus adding extra complexity in terms of space. Furthermore, if

all edges get associated with a semantic stereotype, then an extra mechanism to establish

7.1. Conceptual space of vertexes for analytic and associative phases 91

when to seek for parents will need to be implemented, since a computer can not distinguish

what is a relevant semantic relation that will lead to a desired answer.

Figure 11 – Semantic network representing a chair and a prosthetic leg.

Source: By the Author.

Both can be tackled by searching procedures, as Depth First Search or Breadth

First Search, with the help of markers defining when a cycle occurred and when to seek

for parents. The problem of using such mechanisms, is the big effort in handling paths,

created by the searching process, to reach vertexes from other semantic networks. To

sidestep those problems, in this research it is proposed that the structure used to represent

the conceptual space should be mix between semantic networks and an unstructured

ontology. This structure is defined as a Honing Network and it is composed by super

nodes without edges between children vertexes. For example, in Figure 12, the Honing

Network is composed by two super nodes that represent contracted semantic networks

representing concepts, where the Super node A indicates the chair semantic network, the

Super node B represents the prosthetic leg semantic network, and all vertexes are floating

inside a conceptual space. The super nodes from The Honing Theory are virtual and used

by humans to understand its meaning when developing a system.

Figure 12 – Honing Network super node.

Source: By the Author.

The structure illustrated in Figure 12 permits a search procedure to seek vertexes

in a linear way without data overhead, thus simplifying a system in terms of coding.

Nevertheless, it does not indicate semantic relations between super nodes. In order to

tackle that problem, semantic vertexes, called bridges, are used between super nodes

92Chapter 7. Computational Model of The Honing Theory and The Honing Adaptive Resonance Process

replacing stereotypes from semantic networks. For example, in Figure 13, the super nodes

B and C has the humanoid vertex in common and it’s linked to a vertex called needs,

used to constitute a semantic relation between super nodes, where the Humanoid needs a

leg. The essential problem here is how to identify which leg the humanoid needs, it could

be the chair leg from the super node A or the prosthetic leg from super node B. In this

research is defined that the related super node, or the one that will be activated, is the

one with the most or some microfeatures in common. In this case, the super node B will

be related with C, because they have the vertex humanoid in common.

Figure 13 – Honing Network interconnected super nodes.

Source: By the Author.

By using the bridge vertexes, the semantic relations between concepts in a conceptual

space can be represented. The principal problem that arises with this representation is the

lack of a way to distinguish vertexes between super nodes. For example, in Figure 13, the

super node B constitutes a prosthetic leg that can be used by a humanoid, thus it does

not require a leg as represented by the bridge needs. There are two ways to tackle this

problem, the first one is to use one bridge set for each super node and the other one is on

creating an exclusive set of vertexes for each super node. Either solution will enable to

identify correctly, vertexes and the semantic relation between super nodes.

7.1.2 Activation

Any vertex 𝑣𝑗 ∈ 𝑉 can be activated from external stimulus if obeying the activation

function Φ(𝑠𝑖), where 𝑠𝑖 is the received symbol, representing its microfeature, from a

vertex 𝑣𝑖 ∈ 𝑉 |𝑖 ̸= 𝑗. The set 𝐴 = {𝑣1, ...𝑣𝑛}, represents all activated vertex from a received

external stimulus that will activate the first set of neural cliques 𝑁 = {𝐶1, ..., 𝐶𝑚}, where

𝑚 is the total of neural cliques that were activated and each 𝐶𝑖 ∈ 𝑁 represents a Honing

Network. Each vertex can be activated by two types of connections: 1) Direct; 2) indirect.

7.1. Conceptual space of vertexes for analytic and associative phases 93

Direct connections describe vertexes from Honing Networks activating vertexes from other

Honing Networks. On the other hand, indirect connections are accomplished by bridges

that interconnect Honing Networks with semantic relations. Connections made by bridges

are used to activate Honing Networks that are bound with a semantic relation, moreover,

direct connections are used to describe what microfeatures each activated Honing Network

has in common. For instance, the example depicted in Figure 14 shows a direct connection

between a chair and a prosthetic leg and also a indirect connection between an amputee

and the prosthetic leg Honing Network. This indirect connection is made by a bridge,

shown as the gray node, and the indirect connection is accomplished through the humanoid

and knee nodes. It is important to note that the super node from the leg microfeature,

illustrated in Figure 14, is not shared between super nodes.

Figure 14 – Direct relation between a chair and a prosthetic leg.

Source: By the Author.

7.1.3 The Honing Theory algorithm as a GRASP process

A Greedy Randomized Adaptive Search Procedure (GRASP) process is a meta-

heuristic used for generating solutions to optimization problems (BINATO; OLIVEIRA;

ARAUJO, 2001) (FEO; RESENDE, 1995), where in this research is used to develop a

computational model for The Honing Theory searching process described in Section 7.1.

This model facilitates the creation of an inference engine that can handle sets of Honing

Networks, thus being able to generate creative ideas as a set of activated cliques and

expanded neurds. The GRASP is described as a two phase process as follows: 1) Develop

94Chapter 7. Computational Model of The Honing Theory and The Honing Adaptive Resonance Process

initial solutions, where initial solutions are assembled and grouped to be latter explored;

2) search a local enhanced solution, where the assembled solutions from phase 1 are used

to achieve an unique solution.

The Algorithm 1 is responsible for the first phase of the proposed Honing Algorithm

based on GRASP, where microfeatures are activated from an external stimulus vertex 𝑠

from a Honing Network. By receiving the external stimulus, bridges are activated and

stored inside 𝐵, where each 𝑏𝑖 ∈ 𝐵 is obtained from the 𝑏𝑟𝑖𝑑𝑔𝑒𝑠 function. After obtaining

all bridges, the algorithm employs them to activate parent vertexes that represent activated

microfeatures from the Honing Network and stores each of them inside a set 𝑃 . Each

parent vertex inside 𝑃 is used to retrieve a neural clique 𝐼𝐶𝐼 ∈ 𝐶, through 𝑐𝑙𝑖𝑞𝑢𝑒𝑠 function,

where each neural clique represents what neurds can be activated. A neurd is activated

and stored inside a response clique set 𝐴, if 𝐼𝐶𝑖 ∩ 𝑆 ̸= ∅. This response is finally returned

by the algorithm to perform the honing procedure by Algorithm 2.

Algorithm 1: Greedy Randomized Construction pseudo code for associative
phase clique activation

Input: Seed 𝑠
Output: Activated Cliques 𝐴

1: 𝑆 ← activateClique(𝑠)
2: bridgeResponse 𝑅← ∅
3: bridges 𝐵 ← bridges(𝑠)
4: for each bridge 𝑏𝑖 ∈ 𝐵 do
5: 𝑃 ← parents(𝑏𝑖)
6: 𝐶 ← cliques(𝑃)
7: for each clique 𝐼𝐶𝑖 ∈ 𝐶 do
8: if 𝐼𝐶𝑖 ∩ 𝑆 ̸= ∅ then
9: 𝐴← 𝐴 ∪ 𝐼𝐶𝑖

10: end if
11: end for
12: end for
13: Return 𝐴

Source: By the Author.

The second phase of the proposed process, described by Algorithm 2, selects which

cliques obtained from Algorithm 1, stored inside 𝐴, should be used as neurd responses,

evaluating them with an evaluation function 𝐶ℎ𝑒𝑐𝑘𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛. If the examined cliques inside

𝐴 are valid, then the top-k max responses from 𝐶ℎ𝑒𝑐𝑘𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 will be selected, composing

the final solution 𝑂, otherwise, invalid ones, will suffer a repair to be removed from the

7.2. The Honing Adaptive Resonance process 95

process. The evaluation occurs with a creative assessment metric, as argued in Section 4,

where a domain bounded utility value evaluation is given by a specialist and a novelty

metric calculated as a Bayesian surprise between the examined solution and an already

established population. The algorithm continues building its solution through extracting

all vertexes from a valid 𝐴 and using them at the next iteration of 𝑡 as new bridges.

7.1.4 Discussion

The proposed model and algorithm, for The Honing Theory, enables to generate

adaptive randomized constructions according to a GRASP process that represents the

associative and analytic phases. This model can generate ideas considering not their

evaluation, but also the relying process, what differs from most solutions in generating

creative ideas. However, it has two major problems: 1) It relies in a preconceived Honing

Network given by a specialist, thus it will be a symbolic system bounded to its domain;

2) the 𝐶ℎ𝑒𝑐𝑘𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 function, that evaluates the quality of generated ideas, commonly

deployed as a value plus novelty metric measuring the creativity level of the partially

generated solution inside 𝑂, will also behave within a specified domain since the system

is symbolic. Considering those problems, an emergent model can be used instead, where

creative ideas can be generated without a Honing Network, thus contributing to an

emergent behavior during the interaction between an agent and the environment.

7.2 The Honing Adaptive Resonance process

The HARP is deployed with two ANN. One of them is used to store states to

simulated a POMDP, mainly representing The Adaptive Resonance Theory, and it permits

to perform an optimization technique to obtain maximum paths describing how an agent

will perform a task through sequence of actions. The second one is used to compute how

novel an action is for an observed state, mainly representing the creative thinking process

described by The Honing Theory, thus it will be able to reach novel paths resembling

the creative thinking concept. As illustrated in Figure 15, the HARP is represented with

the POMDP and Novelty ANN. The shown example represents what an agent in seeing

through an input signal 𝐸𝑛𝑣, representing a POMDP state, and the action set {𝑎1, 𝑎2, 𝑎3},

representing all possible actions that an agent can perform. To decide what action it will

take, all the action set and observed state are presented to both networks at the same

96Chapter 7. Computational Model of The Honing Theory and The Honing Adaptive Resonance Process

Algorithm 2: Honing algorithm based on a GRASP procedure

Input: Iterations 𝑡, Seed 𝑠
Output: Output cliques 𝑂

1: New seeds 𝑆 ← ∅
2: for 𝑡 ≥ 0 do
3: 𝐴← ∅
4: if 𝑆 ̸= ∅ then
5: for each 𝑠𝑖 ∈ 𝑆 do
6: 𝐴← 𝐴 ∪𝐺𝑅𝐶(𝑠𝑖)
7: end for
8: else
9: 𝐴← GRC(𝑠)

10: end if
11: if (!CheckSolution(𝐴)) then
12: 𝐴← Repair(𝐴)
13: end if
14: 𝑆 ← microfeatures(𝐴)
15: 𝑂 ← 𝑂 ∪ 𝐴
16: 𝑡← 𝑡− 1
17: end for
18: Return 𝑂

Source: By the Author.

time. As a prediction, both networks will return an action that the agent need to perform

considering the observations.

Figure 15 – The Honing Adaptive Resonance Process.

Source: By the Author.

A module called Contextual Focus is responsible to decide which response to use. If

using the POMDP ANN response, the agent will perform an action that will maximize a

POMDP path. On the other hand, the selected novel action, from the Novelty ANN, will

lead to a novel path. The proposed solution establishes that creative thinking is achieved

7.2. The Honing Adaptive Resonance process 97

by the interaction of agent and its environment, where the optimization of all POMDP

paths is influenced by novel decisions triggered by the Contextual Focus module.

7.2.1 The Honing Theory as an ART system

Most of The Honing Theory can be direct mapped on top of an ART system that

simulates a POMDP, since both describe theoretical concepts that overlaps and represent

how the human brain retrieves memories and form strategies. The main problem when

representing The Honing Theory with an ART system is the lack of a way in discerning

what are ideas, what step of an ART system is mapped as associative or analytic, what is

considered a potentiality state, contextual focus, neural cliques and neurd recruiting.

Considering that The Honing Theory can be mapped into unique levels of meaning,

it is proposed that The Honing Theory/ART mapping should be done in two domains,

abstract and physical. The physical domain is directly tied to the working steps of an

ART system, where contextual focus happens at each step transition from the five step

routine described in Section 4. The neurons activation step triggers a readout that enables

to retrieve memories, thus representing an associative mode, differently, inhibition and

resonance checking steps evaluate neurons analytically. A resonance checking step can also

trigger a new activation procedure, through a reset module, and consequently performing

the same process described by the proposed Honing algorithm based on a GRASP procedure

as showed in Figure 16, where associative phases, described by red hulls activate all four

neurons available, as gray circles, an analytic phase selects one, as a recruited neurd, for

resonance checking and a reset module triggers a new associative phase if resonance fails.

Figure 16 – The HARP physical domain as a cyclic process.

Source: By the Author.

98Chapter 7. Computational Model of The Honing Theory and The Honing Adaptive Resonance Process

In contrast to the physical domain, an abstract one deals with simulated POMDP

paths that can be grouped by meaning level, where less abstract paths are closer to the

physical domain. For example, Figure 17 shows three abstraction levels from less abstract

on the left to more abstract to the right. Less abstract paths are created directly by

performing single actions, from 𝑎1 to 𝑎12, where the blue, red and green circles sets

represent different generated paths, being the orange circle a final state. On the other

hand, paths can be grouped, as shown by the middle example depicted in Figure 17, where

actions 𝑎1 to 𝑎4, 𝑎10 and 𝑎12 are grouped inside the blue circle, 𝑎5 to 𝑎7, 𝑎10, 𝑎11 and

𝑎12 grouped inside the red circle, and actions 𝑎8, 𝑎9 and 𝑎11 grouped inside the green

circle. This representation assumes that the agent, when entering one of those states, will

perform all of the grouped actions, and the virtual POMDP paths will represent links

between previously established strategies. At least, a super strategy node is represented by

linking all possible strategies, and one of them will be performed to reach the final state

through action 𝑎12.

Figure 17 – Abstraction levels.

Source: By the Author.

Each domain, less or more abstract, are mapped as a conceptual space, where

contextual focus and potentiality state happens at each decision step when selecting

actions to perform. By supposing that, analytic phases will occur when selecting an action

to perform and associative phases will occur when selecting a set of possible actions to

explore.

7.2. The Honing Adaptive Resonance process 99

7.2.2 Contextual focus for action prediction

In order to achieve associative and analytic phases inside an ART system, is proposed

that a conceptual space be formed by a set of all states from a simulated POMDP inside

a ANN, being each state represented by neuron weights from an environment, action and

reward fields. With this conceptual space as ART neurons, a creative idea is obtained in

the form of an action predicted by a FALCON architecture with more than two fields. This

prediction represents something that can interact with an environment 𝑒 and generate a

response in the form of a reward, thus an optimization method, as the reactive or temporal

Q-Learning, can be used to obtain a strategy as a POMDP path. However, the generated

strategy from the virtual POMDP is not creative, since they are generated considering

utility values and not novelty. To tackle the lack of evaluation with respect to novelty, it

is proposed that the Bayesian surprise should be used inside an agent’s reasoning within

an associative phase, to generate novel actions according to external stimulus received

from an environment. This method enables the simulation of a Contextual Focus, that

swaps between being divergent or convergent, where it will be convergent when optimizing

utility values and divergent when taking decisions based on surprise responses from an

Expectation ART.

The proposed solution confirms a creative idea as the set of all generated actions

through time, being a POMDP path or strategy, where its optimization is influenced by

novel decisions triggered by a contextual focus. By the proposed solution, strategies will

be optimized in a creative way, since novel decisions will impact in how new states, from a

virtual POMDP, will be achieved. As depicted in Figure 15, the process of generating a

creative decision starts by receiving an external stimulus that represents all the possible

actions, 𝑎1 to 𝑎3, that an agent can perform in its current state and observed environment

𝑒𝑛𝑣. The agent will subsequently decide if it will exploit an already known strategy or

explore a novel one by selecting the highest surprise action. If it determines to exploit the

already known strategy, then it will pass the environment 𝑒𝑛𝑣 as the environment field

of a FALCON system, where the action 𝑎1 is returned as a prediction, otherwise it will

pass all possible actions that it can perform and the received environment 𝑒𝑛𝑣 through a

proposed Expectation ART, that calculates the Bayesian surprise of each received action,

then selects the action 𝑎3 as the one with highest surprise.

The contextual focus process, presented in Algorithm 3, works in a similar way

100Chapter 7. Computational Model of The Honing Theory and The Honing Adaptive Resonance Process

as an 𝜖-greedy decision policy, being the variable 𝜖 a threshold discount factor, from the

FALCON architecture, where if obeying an inequality 𝑟 < 𝑡 it will activate the Expectation

ART, otherwise it will activate the virtual POMDP FALCON.

Algorithm 3: Contextual focus as a decision policy algorithm.

Input: Environment 𝑒, Possible Actions 𝐴
Output: Predicted Action 𝑎

1: 𝑠← 𝑠𝑖𝑔𝑛𝑎𝑙(𝑒)
2: 𝑆𝐴← ∅
3: for each 𝑎𝑖 ∈ 𝐴 do
4: 𝑆𝐴← 𝑆𝐴 ∪ 𝑠𝑖𝑔𝑛𝑎𝑙(𝑎𝑖)
5: end for
6: 𝑟 ← 𝑟𝑎𝑛𝑑𝑜𝑚()
7: if 𝑟 < 𝑡 then
8: 𝑎← 𝑃𝑂𝑀𝐷𝑃𝐴𝑁𝑁(𝑠)
9: else

10: 𝑎← 𝐸𝑥𝑝𝑒𝑐𝑡𝑎𝑡𝑖𝑜𝑛𝐴𝑅𝑇 (𝑠, 𝑆𝐴)
11: end if
12: 𝑡← 𝑡− 𝜖
13: return 𝑎

Source: By the Author.

7.2.3 Discussion

The proposed HARP process is based on using two measurements that will affect

how to optimize the virtual POMDP. There are two primary limitations of the proposal:

1) the POMDP FALCON can behave in a way that facilitate its accelerated growth, thus

resulting in a bigger searching space for the ANN five step routine; 2) it operates two

neural networks in order to obtain both predictions, thus extending the total amount of

memory needed to store both structures. The first problem is more concerning, since the

speed in which the reasoning gives responses will impact in how often the agent can process

States from a Time Flow. A feasible solution to this problem is proposed in Chapter 8,

where fields were broken and represented as channels from a cluster of ART systems that

are assembled as a hierarchical structure. By exerting this kind of structure the search

space size will be reduced when performing the ANN five step routine, since neurons

constitute a distributed hierarchical structure, where each layer is composed by a narrower

set of neurons than a whole ANN.

101

8 ADAPTIVE NEURAL NETWORKS FOR CREATIVE THINKING

In this chapter are proposed three Adaptive Neural Networks to be used within

The Honing Adaptive Resonance Process. The first ANN, presented in Section 8.1, is

called Expectation ART and it permits to calculate the Bayesian surprise within stored

expectation neurons in order to enable the HARP to complete creative behavior. On

the other hand, a second proposal called Proximity Adaptive Neural Network is used to

represent precise information and to allow storing compact representations of observed

States to reduce the amount information stored and processed by the HARP. The last

proposal, called Unstructured Areas Adaptive Neural Network, permits to represent a vast

amount of information and it aims for fast recovery and prediction since is hypothesized that

a creative thinking system would explore better a search space consequently demanding

more storage and processing power. It accomplishes that through the concept of information

sharing between neuron clusters with distinct levels of meaning.

8.1 Expectation ART: Calculating the Bayesian Surprise with an Adaptive

Neural Network

When calculating novelty through Bayesian surprise it is important to handle a

knowledge base, used as a baseline population of already known information, where a

surprise can be measured from an observation. The vital problem when dealing with

such a knowledge base when controlling an agent is the fact that it performs through a

POMDP, where each state maintains information about itself, exclusively, thus if trying

to calculate the surprise with one global knowledge base, the results will be corrupted,

because information from each state can be overlapped by others. Another problem is

related to the lack of a system to store an infinite number of bases one for every viable

state. To tackle these problems, it is proposed the usage of an exclusive multichannel

ANN to handle Bayesian surprise knowledge bases, called Expectation ART, and it holds

exclusive state expectation information about each observed environment 𝑒 as surprise

vectors.

The Expectation ART is defined as a multi channel ANN of two layers 𝐹1 and

𝐹2, as the ARAM neural network. One crucial difference is that the 𝐹 𝑐𝑖
1 , representing its

feature layer, is assembled as 𝑖 ∈ [1, 𝑘 + 𝑛], where 𝑘 indicates the total amount of fields

used to store 𝑘 environment fields information and 𝑛 being the total amount of surprise

102 Chapter 8. Adaptive Neural Networks for Creative Thinking

bases types linked inside a neuron. By using this 𝐹1 layer configuration each neuron from

the 𝐹2 layer will be assembled as a set of weights 𝑊 𝑐𝑖
𝑗 , where 𝑖 ∈ [1, 𝑘], and a set of

memory base links 𝑐𝑚 to surprise vectors 𝑀 𝑐𝑚
𝑗 , where 𝑚 ∈ [1, 𝑛] and 𝑗 being a neuron 𝑗

from 𝑊𝑎𝑙𝑙 as showed in Figure 18.

Figure 18 – Expectation ART neuron with its memory links and surprise vec-
tors.

Source: By the Author.

8.1.1 Surprise vector composition

The surprise alone can be measured with a static knowledge base, that does not

change over time, or a dynamic one, that changes over time. That stems from the fact

that with a symbolic system there is no necessity in updating its values since the system

is all provided by a specialist. However, the expectation ART surprise should be measured

with a dynamic base, since each one is created dynamically through adaptive behavior

inside Expectation neurons, where the overall surprise of a previously stored vector can be

obtained through Equation 25.

𝑆(𝑀 𝑐𝑚
𝑗) = 1− 1

1 + ∑︀ℎ
𝑖=0

𝑁
2𝜎2

𝑖
[𝜎2

𝑖 + (𝑐𝑛𝑒𝑤
𝑖 − �̄�𝑖)2]

(25)

Equation 25 is normalized inside the interval [0, 1], where it is used inside the ART

procedure for prediction, where the term (1 + ∑︀ℎ
𝑖=0

𝑁
2𝜎2

𝑖
[𝜎2

𝑖 + (𝑐𝑛𝑒𝑤
𝑖 − �̄�𝑖)2]) avoids it going

8.1. Expectation ART: Calculating the Bayesian Surprise with an Adaptive Neural Network 103

out of bounds.

Surprise vectors can be composed by a global or window observation. If composed

by a global observation, each 𝑀 𝑐𝑚
𝑗 = {𝑐1, ...𝑐ℎ}, where 𝑗 is the current neuron, 𝑚 the

current field, ℎ as the total amount of actions coded by the vector, and each 𝑐𝑖 ∈ 𝑀 𝑐𝑚
𝑗

being {𝜎, �̄� 𝑛}, where 𝜎 is the variance, �̄� the mean and 𝑛 the total amount of elements

on the population. Each surprise vector, from a global observation, is used to compute

the Bayesian surprise of an action from a starting point in time to a cumulative infinite

future and it is called compact representation. The compact representation of surprise

inside 𝑀 𝑐𝑚
𝑗 prevents recalculations of statistical measurements from a starting point to

a cumulative infinite future, but it does not enable to represent a time window, thus it

can not simulate a short-term memory for expectation. To tackle that problem, each 𝑀 𝑐𝑚
𝑗

needs to store not compact values about statistical measurements of a population, but

rather the entire population measured in a time window, thus changing the form of 𝑀 𝑐𝑚
𝑗

to a dynamic population matrix Λ𝑐𝑚
𝑗 as represented by Equation 26, where each row being

equals to {𝑐1, ..., 𝑐ℎ}.

Λ𝑐𝑚
𝑗 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑐𝑚𝑠,1 𝑐𝑚𝑠,2 · · · 𝑐𝑚𝑠,ℎ

𝑐𝑚𝑠+1,1 𝑐𝑚𝑠+1,2 · · · 𝑐𝑚𝑠+1,ℎ

...
...

𝑐𝑤,1 𝑐𝑤,2 · · · 𝑐𝑤,ℎ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(26)

Each variable 𝑐𝑖𝑗 ∈ Λ𝑐𝑚
𝑗 , constitutes an action that was performed or not for the

time window interval inside the range [𝑚𝑠,𝑤], where each row represent an environment

obtained from a state of a POMDP. This coding can represent a time window, but it lacks

the ability in computing surprise efficiently, thus the application nature will guide in how

to represent expectation through time considering exclusive States information.

8.1.2 Prediction

The prediction process starts at step one, from the multichannel ANN, where

neurons compete against each other through a measured temperature by an activation

function in Equation 14. All neurons, from activation, will be checked one by one, through

the inhibition process by Equation 4, then, resonance is checked to guarantee the quality

of the prediction through Equation 7. The most promising neuron, as the resonating one

104 Chapter 8. Adaptive Neural Networks for Creative Thinking

with the most elevated temperature, is used to extract the surprise of each action that will

be used for readout. The surprise is calculated by vector types linked by all Memory bases

inside an Expectation ART neuron, where each 𝐹 𝑐𝑖
1 |𝑖 ∈ [𝑘 + 1, 𝑛], will be used alongside

its counterpart 𝑀 𝑐𝑚
𝑗 ∈ 𝐹2 in Equation 25 and stored inside 𝑆 = {𝑠𝑎1, ..., 𝑠𝑎𝑛}, where 𝑛 is

the total number of valid actions. The most promising action will attend the one with the

highest surprise selected by Equation 27, where it is used to consider a novel decision.

𝑠𝐴 = max{𝑠𝑎𝑖 : for all 𝑎𝑎𝑖 ∈ 𝑆} (27)

A direct readout occurs through an activity vector 𝑉 in 𝐹 𝑐𝑖
1 , where 𝑣𝑖 ∈ 𝑉 = 1

if the action is selected or 𝑣𝑖 ∈ 𝑉 = 0 if the action was unselected. Furthermore, a

indirect readout can also occur by copying each obtained surprise for actions inside 𝐴,

from Equation 25, into 𝑉 , where 𝑣𝑖 ← 𝑎𝑎𝑖 for each 𝑎𝑎𝑖 ∈ 𝐴.

8.1.3 Learning

The learning process occurs as in the original fuzzy multichannel ANN, however

the surprise bases for the selected learning neuron J, from the ANN learning steps, need to

be updated to obtain an adaptive behavior over time through the presentation of various

environments. The essential problem is the lack of a way in storing 𝜎 and �̄� of a population

to fast recalculate a new 𝜎𝑛𝑒𝑤 and �̄�𝑛𝑒𝑤 based on what action was selected through the

prediction process. To tackle this problem, each variable, 𝜎, �̄� and 𝑛 inside 𝑐𝑖, is used to

store previously calculated statistical measurements from a population that a surprise

vector represents, and consequently updating its values based on Equation 28.

𝑐𝑖 = 𝜎𝑐𝑖𝑛𝑐𝑖 + (𝑣𝑖 − �̄�𝑐𝑖)2

𝑛𝑐𝑖

,
�̄�𝑐𝑖𝑛𝑐𝑖 + 𝑣𝑖

𝑛𝑐𝑖

, 𝑛𝑐𝑖 = 𝑛𝑐𝑖 + 1 for each 𝑐𝑖 ∈𝑀 𝑐𝑚
𝑗 (28)

This learning model makes possible to comprise a global population of what an

agent had performed in a POMDP. When using a window coding, Equations 29 and 30

should be used instead for learning, where 𝑐𝑖,𝑗 ∈ Λ𝑐𝑚
𝑗 is an element from the row 𝑖 and

column 𝑗, and 𝑐𝑤,𝑗 the element from the 𝑗𝑛𝑡ℎ column from line 𝑤.

𝑐𝑖,𝑗 = 𝑐𝑖+1,𝑗 (29)

8.1. Expectation ART: Calculating the Bayesian Surprise with an Adaptive Neural Network 105

𝑐𝑤,𝑗 = 𝑣𝑖 for each 𝑣𝑖 ∈ 𝑉 |𝑖 = 𝑗 (30)

106 Chapter 8. Adaptive Neural Networks for Creative Thinking

8.2 Proximity Adaptive Neural Network for Precise Matching

The ANN operates with ART I or ART II as composite operations within its working

mechanism to categorize neurons in a stable and fast way. The problem of most concern is

the lack of the system in dealing with precise categorizations, thus turning unfeasible the

use of other types of representations inside each input vector. Even though, categorizing

with a high resonance value for 𝜌, can be unguaranteed that the neuron matching will

occur correctly for prediction and learning. Besides that, there is the possibility of a

accelerated growth of input vectors to constitute actions, since the ANN uses one position

𝑖 for each action inside its fields, increasing the computational cost of the algorithm. This

chapter presents a solution for those problems in the form of a new ANN that operates

with Manhattan distances for its activation, inhibition, learning and prediction steps.

Furthermore, to solve the lack of precision is proposed that resonance checking should be

done also for the prediction step. Besides that, it is also proposed that a Spectrum model,

that demands a precise categorization mechanism, for action coding should be used for

substantial amounts of actions.

8.2.1 Spectrum coding

The categorization mechanism of the five step routine of the ANN works with a

feature vector of the form 𝑃 1
𝑖 = {𝑝1, ..., 𝑝𝑛}, where each 𝑝𝑖 ∈ 𝑃 1

𝑖 is a value inside the

interval [0, 1]. There is one problem with this coding refereed as the lack of the system in

dealing with compact representations. For example, if the maximum number of actions

that an agent can perform is equal to 10, then the action field 𝑃 1
2 , responsible for holding

all actions, will codify each one of them as a binary variable, thus creating one item per

action inside 𝑃 1
2 creating an unnecessary data overhead. A valid solution would be using

binary coding instead, however, the network can not code any stimulus in a precise way as

argued in Section 4, thus, even coding with binaries, the network will not categorize them

correctly influencing an agent to achieve incorrect actions. Even when using binary coding,

an unnecessary overhead can be caused by the number of bits used to code all actions

that the agent can perform and also by the complement coding. To tackle the overhead

problem, in this research is proposed that a Spectrum model should be used instead.

In the ANN from Chapter 4, if an agent has a thousand actions, then according

to the FALCON model it should code one action per variable inside its action field. This

8.2. Proximity Adaptive Neural Network for Precise Matching 107

type of coding facilitates using actions as an action mask, where each position 𝑖, from

the action field, represents an usage ratio for the action 𝑖. This model of coding actions

seems suitable if an agent considers fewer actions that it can perform, however if its action

model is larger, a compact model should be appropriate. The Spectrum model is defined

as a value from a range 𝑅 = [𝑚𝑖𝑛, 𝑚𝑎𝑥] that can vary, where 𝑚𝑖𝑛 is the min and 𝑚𝑎𝑥 the

max values of the range. This model is effective to code all actions by dividing an action

𝐼𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑐𝑎𝑡𝑜𝑟 ≥ 0 by the interval upper bound 𝑚𝑎𝑥, where 𝑚𝑎𝑥 ≤ 1 and 𝑚𝑖𝑛 ≥ 0. For

example if an agent has 1000 actions, them the action 1 will be represented as 1/1000 or

0.001, thus instead of creating a vector of a thousand variables all actions can be coded

with one.

This action coding scheme is represented by the restriction 𝑎𝑖 ̸= 𝑎𝑖+1∀𝑎𝑖 ∈ 𝐴, where

each action 𝑎𝑖 ∈ 𝐴 has a different and unique position inside the spectrum, for all possible

actions 𝑎𝑖−1 and 𝑎𝑖+1, as depicted in Figure 19.

Figure 19 – Action spectrum coding model.

Source: By the Author.

Coding actions with the proposed spectrum model for an ANN will cause a drasti-

cally reduction on the size of the action input vector from the action field on a FALCON,

thus coding them also as composite actions of the form 𝑃 1
2 = {𝑃1, ...𝑃𝑚}, being each

𝑃𝑖 ∈ 𝑃 1
2 action set. This model permits the composition of actions described by more than

one variable, for example, if an agent can complete actions from two sets 𝑃1 = {𝑎1, 𝑎2}

and 𝑃2 = {𝑡1, 𝑡2}, where 𝑎1, 𝑎2 are action names, 𝑡1 and 𝑡2 are types, them it can be

represented as 𝑃 1
2 = {𝑃1, 𝑃2}. Its feature vector would be 𝑐 = { 𝐼𝐷1

2 , 𝐼𝐷2
2 }, where 𝐼𝐷1 and

𝐼𝐷2 represents the action position inside each vector. This method is useful if it is essential

to separate actions by type, class or even range, since, with the spectrum model, every

possible action can be coded with one variable that will indicate its position.

108 Chapter 8. Adaptive Neural Networks for Creative Thinking

8.2.2 Proximity Based Categorization for an Adaptive Neural Network

To solve the problems presented in Section 4, this research proposes the utilization

of the normalized sum of the individual euclidean distances, presented by Equation 31, to

calculate the temperature or similarity between the stimulus 𝑥𝑐𝑖 and the neuron weight

𝑤𝑐𝑖
𝑗 .

𝑡𝑗 ∈ 𝑇 =
∑︀𝑘

𝑖=1
1

𝑛𝑐𝑖

∑︀𝑛𝑐𝑖

𝑧=1

√︁
(𝑥𝑐𝑖

𝑧 − 𝑤𝑐𝑖
𝑗𝑧)2

𝑚
(31)

This metric can seem as more precise than both ART I and ART II since ART I

use the fuzzy and operation as the minimum between the stimulus and neuron weights it

can generalize but never specialize. Also, if analyzed, the ART I operation considers the

length relation between input and codified neuron weights, thus leading to categorizations

of divergent classes inside the same neuron. The ART I operation is efficient to generalize

as addressed by (CARPENTER; GROSSBERG; REYNOLDS, 1991; TAN, 1995; WANG;

TAN, 2015) but the over generalization causes data corruption after a few training steps.

The fuzzy ART II was created to solve those problems, as a precise metric, but it groups

received stimulus by direction. Since ART II calculates the cosine of the angle between

the received stimulus and neuron weights, thus stimulus with distinct characteristics, that

does not appear to be similar, can be falsely categorized in the same category.

A further simplification of the Equation 31 could be done, because when
√︁

(𝑥𝑐𝑖
𝑧 − 𝑤𝑐𝑖

𝑗𝑧)2

are added separately, then it turns into |𝑥𝑐𝑖
𝑧 −𝑤𝑐𝑖

𝑗𝑧| that is equal to the Manhattan distance.

For easy understanding, the Equation 31 can be divided into two parts presented by

Equation 32 and 33, as a Manhattan distance metric.

𝑛𝑜𝑟𝑚𝑑(𝑖, 𝑗) =
∑︀𝑛𝑐𝑖

𝑧=1 |𝑥𝑐𝑖
𝑧 − 𝑤𝑐𝑖

𝑗𝑧|
𝑛𝑐𝑖

(32)

The 𝑛𝑜𝑟𝑚𝑑(𝑖, 𝑗) is the normalized Manhattan distance between the received stimulus

𝑥𝑐𝑖 and the neuron weight 𝑤𝑐𝑖
𝑗 from the field 𝑐𝑖, and 𝑛𝑐𝑖 the total number of components or

the length of 𝑥𝑐𝑖 and 𝑤𝑐𝑖
𝑗 . This distance calculates the level of similarity without despising

individual components of the received stimulus and neurons weights, thus it guarantees

that not the length is considered when categorizing. The normalization of 𝑛𝑜𝑟𝑚𝑑(𝑖, 𝑗) by

𝑛𝑐𝑖 is important to maintain the consistency when operating inside the network, and by

8.2. Proximity Adaptive Neural Network for Precise Matching 109

doing this the similarity will always be inside the interval [0, 1], and can be used for other

purposes as a normalized metric.

𝑡𝑗 =
∑︀𝑘

𝑖=1 𝑛𝑜𝑟𝑚𝑑(𝑖, 𝑗)
𝑚

(33)

The global similarity value 𝑡𝑗 for the neuron 𝑗 is computed by the sum of all

the normalized Manhattan distances from all fields 𝑐𝑖 for 𝑐 = 1, ..., 𝑘. The value of 𝑡𝑗 is

normalized by 𝑚, the total of fields inside the multi-channel ANN, to use it as a normalized

metric within the proposed inhibition method described in Section 8.2.3. This value

represents the total normalized temperature or similarity between the received stimulus

𝑋 and 𝑊𝑗, and it ranges inside the interval [0, 1]. The closeness of 𝑡𝑗 to 0 implies into a

nearly perfect match between the verified stimulus and the neuron, otherwise, if 𝑡𝑗 gets

close to 1 this implies in a completely different stimulus.

After the calculation of 𝑇 and its values, the readout can not occur as in the

common multi-channel ANN, the proposed solution needs to calculate the resonance first

and thus ensure the satisfaction of all the vigilance inequalities to obtain a balanced match

between neuron and stimulus. To achieve this, Equation 32 was used within the resonance

checking procedure for each field 𝑐𝑖 for all 𝑖 = 1, ..., 𝑘. The new inequality for resonance

checking, created based on Equation 32, is presented by Equation 34.

𝑚𝑐𝑖
𝑗 = 1− 𝑛𝑜𝑟𝑚𝑑(𝑖, 𝑗) > 𝜌𝑐𝑖 (34)

The 𝑛𝑜𝑟𝑚𝑑 was subtracted from 1 permitting 𝜌𝑐𝑖 to represent the percentage of

matching needed in the field 𝑐𝑐𝑖 to get a resonance as in the original multi-channel ANN.

It is also important to note that the calculation of the new inequality is done at the same

moment when calculating Equation 32, thus saving a lot of processing time. If the results

of the inequality in the Equation 34 returns true, then 𝑚𝑐𝑖
𝑗 is set to true. If resonance

occurs when 𝑚𝑐𝑖
𝑗 = 𝑡𝑟𝑢𝑒 for all 𝑖 = 1, ..., 𝑘, then 𝑦𝑗 is set to an arbitrary value higher than

a predefined constant 𝜁 > 1, otherwise 𝑦𝑗 = 0. This value needs to be higher than 𝜁 to

conform with the neuron inhibition method presented in the Section 8.2.3.

8.2.3 Inhibition method

An inhibition process is what gives the network the capacity to choose appropriate

neurons for the execution of the learning and readout operations. In the approach presented

110 Chapter 8. Adaptive Neural Networks for Creative Thinking

in this research, the inhibitory process is accomplished by getting the max neuron activity

𝑎𝑗 ∈ 𝐴, as presented by the Equation 35.

𝑎𝐽 = max{𝑎𝑗 : for all 𝑎𝑗 ∈ 𝐴} (35)

The difference from Equation 4 is that 𝑎𝑗 = 𝑦𝑗 + (1− 𝑡𝑗) for all 𝑎𝑗 ∈ 𝐴. This puts

each 𝑎𝑗 inside the range [0, 1 + 𝑦𝑗], where each 𝑎𝑗 is the sum of the inverse normalized

Manhattan metric plus the resonating value represented by 𝑦𝑗 > 1. A resonated neuron

can be surely selected after the calculation of the 𝑌 vector, but this will also output

an overgeneralized response from the network because checking if a neuron resonated

or not, does not guarantee the real similarity between the received stimulus and the

neuron weights. The reciprocal cannot be done either as in the original multi-channel

ANN, because selecting by the similarity does not guarantee the neuron is in balance with

the received stimulus. By saying that, the most promising or the most reliable neuron

𝐽 is the one with the higher similarity among all the resonated neurons, that can now

be extracted directly with the max operation from the newly computed vector A. If 𝑎𝑗

is a non-committed neuron, then 𝑎𝑗 = 𝜆, where 1 < 𝜆 < 𝑦𝑗 to ensures the selection of a

non-committed neuron if none of the 𝑦𝑗 ∈ 𝑌 resonate. It is important to note that 𝑎𝑗 must

be equal to 𝜆 if the network is operating in learning mode.

8.2.4 Prediction and learning

A stimulus prediction for an arbitrary field 𝑐𝑖 can be obtained by multiplying

Equations 32 and 34 by an 𝛾𝑐𝑖 = 0, where 𝛾 ∈ [0, 1], thus generating Equations 36 and 37.

𝑛𝑜𝑟𝑚𝑑(𝑖, 𝑗) = 𝛾𝑐𝑖

∑︀𝑛𝑐𝑖

𝑧=1 |𝑥𝑐𝑖
𝑧 − 𝑤𝑐𝑖

𝑗𝑧|
𝑛𝑐𝑖

(36)

𝑚𝑐𝑖
𝑗 = (1− 𝑛𝑜𝑟𝑚𝑑(𝑖, 𝑗)) > 𝛾𝑐𝑖𝜌𝑐𝑖 (37)

This procedure will force the network to ignore the field 𝑐𝑖, ensuring that it will

not generate influence in the cognitive code matching neither in the inhibition procedure.

To control individual components influence directly inside 𝑥𝑐𝑖, the mask 𝐺 can be used.

Thus |𝑥𝑐𝑖
𝑧 −𝑤𝑐𝑖

𝑗𝑧| is multiplied by 𝑔𝑧 ∈ 𝐺, for fine control over each variable influence inside

8.2. Proximity Adaptive Neural Network for Precise Matching 111

the cognitive code matching. This form of coding the neuron similarities is represented by

the Equation 38.

𝑛𝑜𝑟𝑚𝑑(𝑖, 𝑗) = 𝛾𝑐𝑖

∑︀𝑛𝑐𝑖

𝑧=1 𝑔𝑧|𝑥𝑐𝑖
𝑧 − 𝑤𝑐𝑖

𝑗𝑧|
𝑛𝑐𝑖

(38)

For a prediction to be achieved, the full cognitive code matching and inhibition

method must be executed. The cognitive code matching could follow either Equation 36 for

common prediction or Equation 38 for a finetuning prediction, and the resonance vector 𝑌

must be calculated through Equation 37. The process of prediction ends when the readout

of the selected neuron 𝐽 is performed with Equation 6 to preserve the integrity of the

received stimulus presented in 𝑥𝑐𝑖. The full process terminates when learning if the systems

are in learning mode the received stimulus is learned by using Equation 9 to preserve the

integrity of the received stimulus.

112 Chapter 8. Adaptive Neural Networks for Creative Thinking

8.3 Unstructured Area Multi-channel Adaptive Neural Network: Represent-

ing Vast Amounts of Information

In order to represent semantic information in a more simplistic way, the proposed

UAM-ANN organizes ART fields into input channels, where each input channel is composed

of isolated neuron clusters called areas. Channels are organized in a hierarchic way, from top

to bottom, where the top channels represent lower level information and higher channels

represent high level information. Lower levels are used to represent memories obtained

from the ART. On the other and higher levels are used to represent Semantic Objects.

Higher channels can be seen as the combination of lower channels to represent semantic

information. By using this structure, the network can handle different neuron types for

each channel, what permits modularity, and go beyond by reducing the search space when

seeking for a prediction.

8.3.1 Channel structure

The essential structure of the proposed UAM-ANN (Unstructured Area Multi-

channel Adaptive Neural Network) is defined as a set 𝐶 = {𝑐1, ..., 𝑐𝑘+𝑝}, where each 𝑐𝑖 ∈ 𝐶

represents a neuron cluster, made of ART neurons, called area. The size of 𝐶 can vary

according to the networks interaction with an environment, thus all available areas are

represented by 𝑘 + 𝑝, where 𝑘 represents activation areas and 𝑝 prediction areas. Each area

represents a multi-channel ANN with two layer, 𝐹1 and 𝐹2. The 𝐹1 layer is used to activate

neurons and 𝐹2 used to store all neurons from that area. Areas are organized within

channels, where each 𝑐𝑖 ∈ 𝐶 belongs to one, and one, channel 𝑐ℎ𝑖 from the channel set

𝐶𝐻. Each channel has an input activity denoted as 𝑋𝑐ℎ𝑖 = {𝑋𝑐ℎ𝑖
1 , ..., 𝑋𝑐ℎ𝑖

𝑓 } and an output

activity denoted as 𝑂𝑐ℎ𝑖 = {𝑂𝑐ℎ𝑖
1 , ..., 𝑂𝑐ℎ𝑖

𝑓 }, where each 𝑋𝑐ℎ𝑖
ℎ ∈ 𝑋𝑐ℎ𝑖 = {𝑥𝑐ℎ𝑖

ℎ,1, ..., 𝑥𝑐ℎ𝑖

ℎ,𝑛𝑐ℎ𝑟
ℎ

}

and each 𝑂𝑐ℎ𝑖
ℎ ∈ 𝑂𝑐ℎ𝑖 = {𝑜𝑐ℎ𝑖

ℎ,1, ..., 𝑜𝑐ℎ𝑖

ℎ,𝑛𝑐ℎ𝑟
ℎ

}, being ℎ a field, 𝑝 a variable at the 𝑝nth position

and 𝑛𝑐ℎ𝑟
ℎ the total number of variables for the field ℎ. The example illustrated in Figure 20

represents an unstructured area multi-channel ANN, where the area 𝑐1 belongs to channel

1 and it is composed by 6 or more ART neurons, where each one of them is linking an

area in channel 2 from 𝑐2 to 𝑐7 to 𝑐𝑖. The last channel is called 𝑌 and it represents a final

prediction channel.

Areas can be of two types: 1) Prediction; 2) Activation. Prediction areas are

composed by more than one field, thus it is possible to obtain a prediction from them.

8.3. Unstructured Area Multi-channel Adaptive Neural Network: Representing Vast Amounts of
Information 113

Figure 20 – Unstructured area multi-channel Adaptive Neural Network
scheme.

Source: By the Author.

Moreover, activation areas are made by one field, thus they are used to activate other areas.

Each neuron from an area in channel 𝑐ℎ𝑖 have a link to an area in channel 𝑐ℎ(𝑖+1), thus

channels are indirectly connected in a hierarchic way through prediction and activation

areas. In order to facilitate communication and manipulation of areas, the input and

output activity vectors for a channel are plugged to all 𝐹1 layers from all areas within

that channel to send and extract signals from them.

8.3.2 Activation area

Each 𝑐𝑖 ∈ 𝐶 = {𝐹1𝑐𝑖, 𝐹2𝑐𝑖} in channel 𝑐ℎ𝑖, where 𝐹1𝑐𝑖 is the feature layer and

𝐹2𝑐𝑖 the category layer for the activation area 𝑖. The 𝐹1𝑐𝑖 is responsible for holding the

activation vector 𝑋𝑐𝑖 for the area 𝑖, where 𝑋𝑐𝑖 = {𝑥𝑐𝑖
1 , ..., 𝑥𝑐𝑖

𝑛 }, being each 𝑥𝑐𝑖
𝑖 ∈ 𝑋𝑐𝑖 a

variable used to represent a received external stimulus and 𝑛 the total number of variables.

The category layer, differently, is composed of 𝐹2𝑐𝑖 = {𝑁 𝑐𝑖
1 , ..., 𝑁 𝑐𝑖

𝑡 }, where 𝑡 is the total

number of neurons and each 𝑁 𝑐𝑖
𝑖 ∈ 𝐹2 is an ART neuron from the 𝑐𝑖 area. Each neuron

𝑁 𝑐𝑖
𝑗 ∈ 𝐹2𝑐𝑖 is composed as {𝑤𝑐𝑖

𝑗,1, ..., 𝑤𝑐𝑖
𝑗,𝑛𝑐𝑖 , 𝑐(𝑖𝑗)}, where each 𝑤𝑐𝑖

𝑗,𝑖 ∈ 𝑁 𝑐𝑖
𝑗 ∈ [0, 1], 𝑐(𝑖𝑗) being

a activation area linked by 𝑁 𝑐𝑖
𝑗 to an area in channel 𝑐ℎ𝑖+1 and 𝑛𝑐𝑖 the total number of

variables used to code 𝑁 𝑐𝑖
𝑗 .

8.3.3 Prediction area

A prediction area predicts information based on an incomplete observation from

an environment 𝑒. It is defined as 𝑐𝑖𝑝 ∈ 𝐶 in channel 𝑐ℎ𝑖, where each 𝑐𝑖𝑝 = {𝐹1𝑐𝑖𝑝, 𝐹2𝑐𝑖𝑝},

114 Chapter 8. Adaptive Neural Networks for Creative Thinking

being 𝐹1𝑐𝑖𝑝 a feature layer and 𝐹2𝑐𝑖𝑝 a category layer. The 𝐹1𝑐𝑖𝑝 layer is composed by

the activity vectors 𝑋𝑐𝑖𝑝 = {𝑋𝑐𝑖𝑝
1 , ..., 𝑋𝑐𝑖𝑝

𝑓 }, where each 𝑋𝑐𝑖𝑝
𝑖 ∈ 𝑋𝑐𝑖𝑝 = {𝑥𝑐𝑖𝑝

𝑖,1 , ..., 𝑥𝑐𝑖𝑝

𝑖,𝑛𝑐𝑖𝑝
𝑖

} and

𝑓 the total number of fields used to code the activity vectors. Each 𝑋𝑐𝑖𝑝
𝑖 ∈ 𝑋𝑐𝑖𝑝 is used

to represent the field 𝑖 inside from the 𝑐𝑖𝑝 area, each 𝑥𝑐𝑖𝑝
𝑖,𝑗 ∈ 𝑋𝑐𝑖𝑝

𝑖 is the variable value at

the 𝑗𝑛𝑡ℎ position and 𝑛𝑐𝑖𝑝
𝑖 is used to indicate the total number of variables from field 𝑖.

Moreover, the 𝐹2𝑐𝑖𝑝 is described as a set {𝑁 𝑐𝑖𝑝
1 , ..., 𝑁 𝑐𝑖𝑝

𝑧 }, where 𝑧 is the current number

of neurons coded by the area 𝑐𝑖𝑝. Each 𝑁 𝑐𝑖𝑝
𝑗 ∈ 𝐹2𝑐𝑖𝑝 is an ART neuron composed as

{𝑊 𝑐𝑖𝑝
1,𝑗 , ..., 𝑊 𝑐𝑖𝑝

𝑓,𝑗 }, where 𝑊 𝑐𝑖𝑝
𝑖,𝑗 ∈ 𝑁 𝑐𝑖𝑝

𝑗 is equals to {𝑤𝑐𝑖𝑝
𝑖,𝑗,1, ..., 𝑤𝑐𝑖𝑝

𝑖,𝑗,𝑛𝑐𝑖𝑝
𝑖

, 𝑐(𝑖𝑗)}, being 𝑖 the 𝑖nth

field from 𝐹1𝑐𝑖𝑝, 𝑗 the 𝑗𝑛𝑡ℎ neuron from 𝐹2𝑐𝑖𝑝, 𝑤𝑐𝑖𝑝
𝑖,𝑗,𝑝 the variable at the 𝑝nth position in

𝑊 𝑐𝑖𝑝
𝑖,𝑗 , 𝑛𝑐𝑖𝑝

𝑖 the total number of variables for the 𝑖nth field and 𝑐(𝑖𝑗) a link to an area in

channel 𝑐ℎ𝑖+1.

8.3.4 Prediction

The prediction mechanism for the proposed network also works with a routine

described as: 1) Activating; 2) Inhibition; 3) Resonance checking; 4) Reset; and 5) Readout.

It starts by receiving an external stimulus in all channels simultaneously and storing their

input signal into their 𝑋𝑐ℎ𝑖 activity vectors. At this stage, the network activates the first

channel and transfers the input from 𝑋𝑐ℎ1 into the 𝐹1 layer from area 𝐶1. With that data

stored there, the network then completes the activation, where neurons from 𝐶1 compete

against each other in order to be selected. For instance, the example in Figure 21 shows an

unstructured area multi-channel ANN with 4 channels, where two of them are prediction

channels. In the shown example, the prediction process starts by activating all neurons

from area 𝐶1 in channel 1 upon the presentation of an external stimulus to the 𝐹1𝑐ℎ1

layer. The activated neurons pass through an inhibition process and resonance checking

process in order to select the most compatible neuron with the received external stimulus.

If the selected neuron does not pass the resonance checking, then a reset occurs and a new

neuron will be searched from that area. The selected neuron, represented by green nodes,

activate an area in channel 2, thus reducing the search space by excluding neurons that

are unrelated to the initial received external stimulus in channel 1.

When reaching channel 2, a new input needs to be presented in order to perform

another activation and resonance checking process enable to achieve higher channels. At

each inhibition, selected neurons can predict within their fields if the channel is assembled

8.3. Unstructured Area Multi-channel Adaptive Neural Network: Representing Vast Amounts of
Information 115

Figure 21 – Unstructured area multi-channel Adaptive Neural Network area
activation example.

Source: By the Author.

with Prediction areas, as shown by the Intermediary prediction node in gray. When reaching

the last channel, called channel 𝑌 , the last prediction will be achieved as illustrated by the

yellow node. The set of all predictions forms a full memory, represented by the blue path,

considering the presentation of external stimulus at each channel. This model does not

reduce the searching space but constitutes fields with unstructured information, thus being

more flexible than the original ANN where each neuron has one static field structure.

8.3.5 Neuron Activation functions

An activation process can be accomplished by three types of coding, ART I, ART

II or Proximity. In order to generalize larger amounts of information, neuron activation

should be accomplished by ART I operations described by Equations 39, for Prediction

areas, and 40, for activation areas. Those equations calculate the normalized sum of the

input length compared to the stored weights inside all neurons to verify the similarity

level between them.

𝑡𝑐ℎ𝑟,𝑐𝑖𝑝
𝑗 =

𝑓∑︁
ℎ=1

𝛾𝑐ℎ𝑟
ℎ

∑︀𝑛𝑐𝑖𝑝
ℎ

𝑝=1 𝑥𝑐ℎ𝑟
ℎ,𝑝 ∧ 𝑤𝑐𝑖𝑝

ℎ,𝑗,𝑝

𝛼𝑐ℎ𝑟 + ∑︀𝑛𝑐𝑖𝑝
ℎ

𝑝=1 𝑤𝑐𝑖𝑝
ℎ,𝑗,𝑝

(39)

𝑡𝑐ℎ𝑟,𝑐𝑖
𝑗 =

∑︀𝑛𝑐𝑖

𝑝=1 𝑥𝑐ℎ𝑟
𝑝 ∧ 𝑤𝑐𝑖

𝑗,𝑝

𝛼𝑐ℎ𝑟 + ∑︀𝑛𝑐𝑖

𝑝=1 𝑤𝑐𝑖
𝑗,𝑝

(40)

The operator ∧ is the fuzzy min, 𝛾𝑐ℎ𝑟
ℎ is the channel influence on the activation

from neuron 𝑗, 𝑥𝑐ℎ𝑟
ℎ,𝑝 the activity vector variable 𝑝 in 𝑋𝑐ℎ𝑟 from ℎ field, 𝑤𝑐𝑖𝑝

ℎ,𝑗,𝑝 the neuron

116 Chapter 8. Adaptive Neural Networks for Creative Thinking

weight for variable 𝑝, 𝑓 the total number of fields, 𝑛𝑐𝑖𝑝
ℎ the total number of variables for

the field ℎ, and 𝛼𝑐ℎ𝑟 a parameter from channel 𝑐ℎ𝑟 to prevent divisions by zero.

In order to generalize and permit some degree of specialization inside neurons, the

ART II operations described by Equations 41, for Prediction areas, and 42, for Activation

areas should be used. Those metrics calculate the angle between a received stimulus from

a channel 𝑐ℎ𝑟 and neuron weights for all 𝑤𝑐𝑖𝑝
ℎ,𝑗,𝑝.

𝑡𝑐ℎ𝑟,𝑐𝑖𝑝
𝑗 =

𝑓∑︁
ℎ=1

𝛾𝑐ℎ𝑟
ℎ

∑︀𝑛𝑐𝑖𝑝
ℎ

𝑝=1 𝑥𝑐ℎ𝑟
ℎ,𝑝 × 𝑤𝑐𝑖𝑝

ℎ,𝑗,𝑝∑︀𝑛𝑐𝑖𝑝
ℎ

𝑝=1(𝑥𝑐𝑖𝑝
ℎ,𝑝)2 ×∑︀𝑛𝑐𝑖𝑝

ℎ
𝑝=1(𝑤𝑐𝑖𝑝

ℎ,𝑗,𝑝)2
(41)

𝑡𝑐ℎ𝑟,𝑐𝑖
𝑗 =

∑︀𝑛𝑐𝑖

𝑝=1 𝑥𝑐ℎ𝑟
𝑝 × 𝑤𝑐𝑖

𝑗,𝑝∑︀𝑛𝑐𝑖

𝑝=1(𝑥𝑐ℎ𝑟
𝑝)2 ×∑︀𝑛𝑐𝑖

𝑝=1(𝑤𝑐𝑖
𝑗,𝑝)2

(42)

Precise categorization can be achieved with the proposed metrics from Chapter 8.

They are described by Equations 43, for Prediction areas, and 44, for Activation areas.

They calculate the normalized distance between the received stimulus in each 𝑥𝑐ℎ𝑟
ℎ,𝑝 and

𝑤𝑐𝑖𝑝
ℎ,𝑗,𝑝 is calculated through an euclidean method, being 𝑚𝑐ℎ𝑟 the total number of variables

from a field ℎ in channel 𝑐ℎ𝑟 used to normalize the activation between [0,1].

𝑡𝑐ℎ𝑟,𝑐𝑖𝑝
𝑗 =

∑︀𝑓
ℎ=1

1
𝑛𝑐𝑖𝑝

ℎ

∑︀𝑛𝑐𝑖𝑝
ℎ

𝑝=1 𝑔𝑐ℎ𝑟
𝑝 ×

√︁
(𝑥𝑐ℎ𝑟

ℎ,𝑝 − 𝑤𝑐𝑖𝑝
ℎ,𝑗,𝑝)2

𝑚𝑐ℎ𝑟
(43)

𝑡𝑐ℎ𝑟,𝑐𝑖
𝑗 = 1

𝑛𝑐𝑖

𝑛𝑐𝑖∑︁
𝑝=1

𝑔𝑐ℎ𝑟
𝑝 ×

√︁
(𝑥𝑐ℎ𝑟

𝑝 − 𝑤𝑐𝑖
𝑗,𝑝)2 (44)

Finally, a simplified activation with a proximity metric, Equations 45, for Prediction

areas, and 46, for Activation areas, should be used since they calculate a Manhattan

distance normalized metric between a received activity in each 𝑥𝑐ℎ𝑟
ℎ,𝑝 and each neuron weight

𝑤𝑐𝑖𝑝
ℎ,𝑗,𝑝.

𝑡𝑐ℎ𝑟,𝑐𝑖𝑝
𝑗 =

∑︀𝑓
ℎ=1

1
𝑛𝑐𝑖𝑝

∑︀𝑛𝑐𝑖𝑝
ℎ

𝑝=1 𝑔𝑐ℎ𝑟
𝑝 × |𝑥𝑐ℎ𝑟

ℎ,𝑝 − 𝑤𝑐𝑖𝑝
ℎ,𝑗,𝑝|

𝑚𝑐ℎ𝑟
(45)

𝑡𝑐ℎ𝑟,𝑐𝑖
𝑗 = 1

𝑛𝑐𝑖
ℎ

𝑛𝑐𝑖∑︁
𝑝=1

𝑔𝑐ℎ𝑟
𝑝 × |𝑥𝑐ℎ𝑟

𝑝 − 𝑤𝑐𝑖
𝑗,𝑝| (46)

8.3. Unstructured Area Multi-channel Adaptive Neural Network: Representing Vast Amounts of
Information 117

8.3.6 Area inhibition and retrieval

The inhibition process is performed after activation and it calculates which neuron

will be selected after activating all of them from an area 𝑐(𝑖𝑗) from a channel 𝑐ℎ𝑟. The

selected neuron 𝐽 is accomplished by following Equation 47.

𝑡𝑐ℎ𝑟,𝑐𝑖𝑝
𝐽 = max{𝑡𝑐ℎ𝑟,𝑐𝑖𝑝

𝑗 : for all 𝑡𝑐ℎ𝑟,𝑐𝑖𝑝
𝑗 ∈ 𝑇 𝑐ℎ𝑟,𝑐𝑖𝑝} (47)

Where 𝑇 𝑐ℎ𝑟,𝑐𝑖𝑝 is holding all neuron activations for the 𝑐ℎ𝑟 channel and 𝑐(𝑖𝑗) area.

The retrieved area 𝑐𝑖𝑟 is selected from the activated neuron 𝑡𝑐ℎ𝑟,𝑐𝑖𝑝
𝐽 weights from its 𝑐𝑟+1

variable that holds the area link from the 𝑐ℎ𝑟+1 channel. The selected area is also returned

into a new activation and inhibition process, thus permitting it to reiterate until it is

performed on an area from the last channel 𝑌 in order to achieve a decisive response.

8.3.7 Learning

The learning process creates areas and learns previously received stimulus. It is

proposed in this solution that the learning process should occur in two stages, where

in stage 1 new areas can be created and in the stage 2 neurons can adjust its weights

according to the received external stimulus from each 𝑋𝑐ℎ𝑖
.

Stage 1 learning: This stage occurs when activating neurons from any channel

𝑐ℎ𝑟 different from channel 𝑌 , where a new neuron 𝑁
𝑐ℎ𝑟,𝑐𝑖𝑗

𝑗 , from area 𝑐(𝑖𝑗), is created if it

does not exist. In this case, neuron weights are updated with Equation 48.

𝑤
𝑐(𝑖𝑗)
ℎ,𝑗,𝑝 = 𝑥𝑐ℎ𝑟

ℎ,𝑝 for each 𝑤
𝑐(𝑖𝑗)
ℎ,𝑗,𝑝 ∈ 𝑁

𝑐ℎ𝑟,𝑐(𝑖𝑗)
𝑗 (48)

Where ℎ is the current field, 𝑗 a newly created 𝑗𝑛𝑡ℎ neuron, 𝑝 the variable a the

𝑝nth position inside the ℎ field and 𝑥𝑐ℎ𝑟
ℎ,𝑝 the activity inside the 𝐹1𝑐𝑖𝑗 layer from area 𝑐(𝑖𝑗)

inside a channel 𝑐ℎ𝑟. This learning should occur for each present field inside 𝑁
𝑐ℎ𝑟,𝑐𝑖𝑗

𝑗 . The

created neuron will finally link a new area 𝑐𝑖𝑘 inside its weights, turning possible for the

activation procedure to go through all channels until reaching a channel 𝑌 .

Stage 2 learning: This stage occurs if the selected neuron passes through a

resonance checking, thus being enabled for learning, or a Stage 1 learning. It performs

weights adjustments with ART I or ART II learning methods. The ART I learning described

118 Chapter 8. Adaptive Neural Networks for Creative Thinking

by Equation 49, adjust weights according to the fuzzy AND operation, thus it generalizes

an amount of the received stimulus in each 𝑥𝑐ℎ𝑟
ℎ,𝑝 . If following the ART II method, neurons

weights are accomplished with Equation 48.

𝑤
𝑐(𝑖𝑗)
ℎ,𝑗,𝑝 = 𝑤

𝑐(𝑖𝑗)
ℎ,𝑗,𝑝 ∧ 𝑥𝑐ℎ𝑟

ℎ,𝑝 for each 𝑤
𝑐(𝑖𝑗)
ℎ,𝑗,𝑝 ∈ 𝑁

𝑐ℎ𝑟,𝑐(𝑖𝑗)
𝑗 (49)

Where ℎ is the current field, 𝑗 an already created 𝑗𝑛𝑡ℎ neuron, 𝑝 the variable a the

𝑝nth position inside the ℎ field and 𝑥𝑐ℎ𝑟
ℎ,𝑝 the activity inside the 𝐹1𝑐𝑖𝑗 layer from area 𝑐(𝑖𝑗)

inside a channel 𝑐ℎ𝑟.

8.3.8 Resonance checking and reset

A resonance checking can be performed on top of a selected neuron 𝑡𝑐ℎ𝑟,𝑐𝑖𝑝
𝐽 , from the

activation and inhibition processes, in order to ensure certain level of matching according

to a resonance checking parameter 𝑝𝑐ℎ𝑟 , thus selecting reliable neurons for learning or

predicting. It can be accomplished by the proposed proximity metric, with Equations 50

and 51, or with Equation 52.

𝑛𝑜𝑟𝑚𝑑(ℎ, 𝐽) =
𝛾𝑐ℎ𝑟

ℎ

∑︀𝑛
𝑐(𝑖𝑗)
ℎ

𝑝=1 |𝑥𝑐ℎ𝑟
ℎ − 𝑤

𝑐(𝑖𝑗)
ℎ,𝐽,𝑝|

𝑛
𝑐(𝑖𝑗)
ℎ

(50)

𝑚
𝑐ℎ𝑟,𝑐(𝑖𝑗)
ℎ,𝐽 = (1− 𝑛𝑜𝑟𝑚𝑑(ℎ, 𝐽)) > 𝛾𝑐ℎ𝑟

ℎ 𝜌𝑐ℎ𝑟
ℎ (51)

𝑚
𝑐ℎ𝑟,𝑐(𝑖𝑗)
ℎ,𝐽 =

∑︀𝑛
𝑐(𝑖𝑗)
ℎ

𝑝=1 𝑥𝑐ℎ𝑟
ℎ,𝑝 ∧ 𝑤

𝑐(𝑖𝑗)
ℎ,𝑗,𝑝∑︀𝑛

𝑐(𝑖𝑗)
ℎ

𝑝=1 𝑥𝑐ℎ𝑟
ℎ,𝑝

> 𝜌𝑐ℎ𝑟
ℎ (52)

Where 𝑐ℎ𝑟 is the current channel, 𝑐(𝑖𝑗) the area where resonance is being checked,

𝐽 the selected neuron from the inhibition process, 𝑝 the current variable inside neuron

weights, ℎ the current field, if performing in a Prediction area, and 𝑛
𝑐𝑖𝑗

ℎ the total number

of variables on the ℎ field. In order to resonate, the neuron 𝑚
𝑐ℎ𝑟,𝑐𝑖𝑗

ℎ,𝐽 needs to obey the

resonance checking rule for all fields in 𝑐ℎ𝑟 channel, otherwise a reset occurs and a new

activation and inhibition processes will select a new neuron to be checked. If no resonance

occurs after checking all neurons in 𝑐(𝑖𝑗), then a new neuron is created in 𝑐(𝑖𝑗) with Stage

1 learning.

8.3. Unstructured Area Multi-channel Adaptive Neural Network: Representing Vast Amounts of
Information 119

8.3.9 Readout

A readout operation can be performed within Prediction areas and is accomplished

by a direct access method or by inhibiting the 𝜌𝑐ℎ𝑟
ℎ for the field that will be predicted

from area 𝑐𝑖𝑝 in channel 𝑐ℎ𝑟𝑟. The direct access method works by setting 𝑥𝑐ℎ𝑟
ℎ,𝑝 = 1 for

each 𝑥𝑐ℎ𝑟
ℎ,𝑝 ∈ 𝑋𝑐ℎ𝑟

ℎ in channel 𝑐ℎ𝑟 and field ℎ. This will permit the activation and inhibition

processes in ignoring the ℎ field when performing, thus all ignored fields will perform a

readout after selecting the 𝐽𝑛𝑡ℎ neuron. The 𝜌𝑐ℎ𝑟
ℎ for the ℎ field works with the proximity

activation metrics, where the ℎ field will be suppressed during activation and inhibition

processes. The readout can follow Equation 53, in order to obtain an ART I response from

the network, or Equation 54, in order to obtain an ART II response accomplishing a more

precise response if needed.

𝑜𝑐ℎ𝑟
ℎ,𝑝 = 𝑤

𝑐(𝑖𝑗)
ℎ,𝐽,𝑝 ∧ 𝑥𝑐ℎ𝑟

ℎ,𝑝 for each 𝑤ℎ,𝐽,𝑝 ∈ 𝑊
𝑐(𝑖𝑗)
ℎ𝐽

(53)

𝑜𝑐ℎ𝑟
ℎ,𝑝 = 𝑤

𝑐(𝑖𝑗)
ℎ,𝐽,𝑝 for each 𝑤ℎ,𝐽,𝑝 ∈ 𝑊

𝑐(𝑖𝑗)
ℎ𝐽

(54)

Where ℎ is the field that will be given as a response by the readout, 𝐽 the selected

neuron from the inhibition process, 𝑐(𝑖𝑗) the working field inside 𝑐ℎ𝑟, 𝑤
𝑐(𝑖𝑗)
ℎ,𝐽,𝑝 a variable from

the selected neuron 𝐽 weights 𝑊
𝑐(𝑖𝑗)
ℎ,𝑗 . This type of readout will perform a generalization in

all responses, thus it need to be used with caution.

Part III

Deploying the Honing Adaptive Resonance Process in HearthStone agents

123

9 HEARTHSTONE MODELS FOR AN ADAPTIVE NEURAL NET-

WORK

In this chapter is presented all the proposed Hearthstone feature vector compositions

in order to represent a game State from its Time Flow. The proposed model assumes that

high level information is already available from the game and coded into symbols. Four

models are proposed in order to represent the game, where two of them are referring to

the game environment, what a player can see from a State, and the other two that refers

how to represent actions that an agent can take.

In the digital collectible card games universe, Hearthstone is one of the most played

games in the last year (BLIZZARD, 2018; GóES et al., 2016). The game mechanics rely

on alternating turn matches between two players, where each player tries to destroy a

controllable avatar called hero from the opposite player. If the hero avatar of one player is

destroyed, then the opposite player wins the game. Each avatar has health points limited

to a maximum of thirty points, and each avatar also have extra health points stored as

armor points. There are currently nine available hero avatars to play with: 1) Druid; 2)

Hunter; 3) Mage; 4) Paladin; 5) Priest; 6) Rogue; 7) Shaman; 8) Warlock; 9) Warrior. A

player also has resources called mana crystals and a battlefield depicted in Figure 22.

Figure 22 – Hearthstone battlefield from Blizzard’s Entertainment all rights
reserved (BLIZZARD, 2018).

Source: By the Author.

On each turn, a player draws a card from his 30-card deck and play cards from

his hand, summoning minions to the battlefield or/and casting spells on characters. The

124 Chapter 9. Hearthstone models for an Adaptive Neural Network

battlefield is where most of the combat actually happens. It can accommodate up to 7

minions on each player’s side at the same time. Minions that are not destroyed in the

current turn, usually stay in the battlefield for the next turn.

Before engaging in a match, a player has to pick a hero that represents a particular

class, with specific cards and hero power. Then he has to build a deck of 30 cards composed

of the specific hero’s cards but also of neutral cards, that are common to all classes. There

are mainly two types of cards: minion and spell. Each minion card commonly has attributes

such as attack points, health points, mana cost and effects. The attribute attack points

indicates how much damage a minion can inflict, and health points how much damage it

can take before it is destroyed. The mana cost attribute dictates how much resource (mana

crystals) a specific card costs to be played. Finally, the attribute effects can vary from

increasing the damage of a minion, restoring hero’s health points to freezing an enemy

minion and many others. On the other hand, spell cards have mana cost and effect.

Once a game match starts, each hero begins with 30 health points and is defeated

when its health points down to zero. On each turn, a player can play any cards from his

hand, use his hero power or minions to attack characters (minions or hero) and particularly

combining cards, that is, playing combos. In this research, a combo is defined as a group

of related cards played in the same turn, independently of order.

9.1 Hearthstone search space size assumptions

In order to estimate how many POMDP States an agent needs to deal with in

Hearthstone, some assumptions were made: 1) each player can have a maximum of 30

health points; 2) 2 copies of the same card in the deck; 3) can not steal cards from enemy’s

deck; 4) can not duplicate cards from their decks; 5) each card have one instance, where

cards affected by buff effects, that changes their stats, will not be considered new instances;

6) and a player has 100 hero cards plus 717 neutral cards to build his own deck, thus

giving him 817 cards to play with.

Considering all assumptions, an estimation on how many battlefields configurations

Hearthstone can have for one player for all nine heroes and all battlefield sizes is given

as ∼1.78 × 1023. The proposed estimation for the total amount of states considering

one player is equals to 1.78 × 1023 × ℎ𝑒𝑎𝑙𝑡ℎ ×𝑚𝑎𝑛𝑎 and for two players it is equals to(︁
1.78×1023

)︁2
×ℎ𝑒𝑎𝑙𝑡ℎ2×𝑚𝑎𝑛𝑎2 ≈ 2.85×1051, where ℎ𝑒𝑎𝑙𝑡ℎ is the assumed total amount

9.2. Micro and macro models 125

of health, and 𝑚𝑎𝑛𝑎 the assumed total amount of mana. It is important to note that this

estimation counts the quantity of states in a POMDP and not paths that can be formed

by combining them.

For all the assumed conditions, it is estimated that Hearthstone has 2.85 × 1051

possible states. However, when computing paths between them, the result shows a number

equals to ∑︀𝑚
𝑝=0(2.85× 1051)𝑝, where 𝑝 is the size of the path and 𝑚 the maximum allowed

path size. This estimation can not be calculated easily since 𝑚 = ∞ if the rule that

estimate the game time limit is abdicated. If estimating for paths where 𝑚 = 2 the results

leads to ∼8.12× 10102. This estimation is absurdly higher than 1081 that represents the

total estimated amount of fundamental particles on the visible universe (POUNDSTONE,

2013). The nature of Heartstone provides a search space so big that is practically impossible

to generate strategies by hand or without some sort of advanced cognition. Reasoning in

HearthStone is a hard task to achieve, since its search space size when estimated only for

𝑚 = 1 is more than half of the total amount of estimated state, equal to 250150, for the

GO game (SILVER et al., 2016).

9.2 Micro and macro models

In this research, it is proposed that the Hearthstone model should be accomplished

according to a granularity level. This granularity level imparts how much information is

used to describe game objects and is represented by two models: Macro and micro. The

example illustrated in Figure 23 shows a micro model for the card Wildhammer Keeper,

where the card characteristics are used to describe the card with two symbols: Taunt and

Overload.

Figure 23 – Micro model for the Wildhammer Keeper card.

Source: By the Author.

126 Chapter 9. Hearthstone models for an Adaptive Neural Network

The micro model is used according to the application needs. For example, the model

depicted in Figure 23 represents cards with isolated symbols, thus assigning them with

other cards. This kind of representation stores a vaster amount of semantic information

using less storage space. By contrast, a macro model indicates a wide view of the game

and uses less information about objects in the game. For example, the three cards showed

in Figure 24 are represented by the symbols: card 1 ; card 2 ; and card 3. As showed in

Figure 24, the card Wildhammer Keeper now is represented with one symbol called card 1,

thus resulting in a simpler representation that costs more storage space.

Figure 24 – Macro model for three Hearthstone cards.

Source: By the Author.

9.3 Numeric model for symbols

In order to model numerically a Hearthstone card, it is proposed that symbols

need to be mapped into variables that work inside a numeric range. For example, the

Wildhammer Keeper card depicted in Figure 23 can be represented with the feature vector

𝐼 = {𝑎, 𝑏}, where 𝑎 will be equals to 1 if the card posses the symbol Taunt and equals 0

otherwise, and 𝑏 will be equals to 1 if the card posses the symbol Overload and equals

0 otherwise. This kind of codding is done for all symbols available in the game from all

cards, thus generating the feature vector 𝐹 = {𝑓1, ..., 𝑓𝑛}, where 𝑛 is the total number of

features from all cards in the game and each 𝑓𝑖 ∈ 𝐹 is a binary variable that portray the

presence or absence of a symbol on the object that are being represented. Other attributes

can also be represented, like the attack and health of minions. In order to represent those

9.4. Attribute curves model 127

attributes the vector 𝐹 can be enhanced, where 𝐹 = {𝑓1, ..., 𝑓𝑛, 𝑧1, ..., 𝑧𝑚}, each 𝑧𝑖 ∈ 𝐹 is

the numeric value of the symbol that represents a card attribute and 𝑚 being the total

number of attributes.

9.4 Attribute curves model

Attributes and symbols can be represented with the proposed numeric model for

cards, however each Hearthstone battlefield can have more than just one card. To represent

more than one card, it is proposed that attribute curves should be used with a numeric

model, where an attribute curve is a histogram of the attributes of all cards present on a

battlefield. The particular idea in using this model is to generalize as much as possible when

representing cards inside an environment, thus the high cognition feature vector can be

exploited by the ART system generalization mechanism. An attribute curve is composed

by an attribute vector, of the class 𝑐𝑙𝑠, 𝐴𝑇𝑐𝑙𝑠 = {𝑎𝑡1, ..., 𝑎𝑡𝑔}, where each 𝑎𝑡𝑖 ∈ 𝐴𝑇𝑐𝑙𝑠

represents the sum of the attribute 𝑖 from a class 𝑐𝑙𝑠 for all cards on the battlefield.

If creating an attribute curve 𝐴𝑇ℎ to represent the health for each card on a player’s

battlefield, thus each 𝑎𝑡𝑖 ∈ 𝐴𝑇ℎ should represent the health sum for each health level 𝑖.

9.5 Compact environment model

A compact environment model is the collection of all the visible entities in a

Hearthstone battlefield and it is defined by the variable sets E and A, where E represents

the set of environment variables and A the possible actions. The environment E is coded as

a set of 8 variables, where 𝐸 = 𝑒1, ..., 𝑒8. The variables 𝑒1 and 𝑒2 indicate the summarized

amount of health and armor for the player and opponent, respectively, 𝑒3 and 𝑒4 represent

the total number of cards in the hand’s of each player, 𝑒5 and 𝑒6 the total amount of

minions on each battlefield and the variables 𝑒7 and 𝑒8 represent the card score for all the

minions in both battlefields respectively. This model of environment coding was obtained

by analyzing both the battlefields and extracting the variables that are directly shown to a

player, but it is important to note that not all cards and actions inside the game have full

visibility, thus the game can be considered as a POMDP. The lack of information when

coding environments enables further generalization by HearthBot when representing more

than one environment, thus completing a concise categorization of a set of environments.

128 Chapter 9. Hearthstone models for an Adaptive Neural Network

9.6 Full compact action model

The compact model, that uses a spectrum coding, is represented by events that

happen in a time flow interacting within game components. Actions are coded in the

proposed solution as a set of events that occurs on a Hearthstone environment. Each

event is represented by card’s semantics and extracted, in most part, from its text as

illustrated in Figure 25, where the Envenom card’s text was transformed into an event

called Double Attack that targets an Ally weapon through interpreting the text "Double

your weapon’s Attack this turn". Events can interact with others and consequently enable

cards to influence how the game will behave, for example, if a player plays the card A it

will trigger its events that will possibly interact with game components and other cards.

In order to represent how events interact with other components, specially other cards,

each action can be coded as a vector composed by a source and by a target. For example,

if a player plays card A, then it will interact with card B, thus leading to the creation

of an action vector (A, B) that represents the action that was taken. All events that can

occur by playing a card A are encapsulated inside that card, this resembles a compact

model to avoid the representation of all possible events that exist inside the cards with

semantic structures like trees.

Figure 25 – Envenom card from Hearthstone with its description text "Double
your weapon’s Attack this turn".

Source: By the Author.

However, coding sources and targets, is impossible to identify what kind of events

happened between a card A and a card B, thus it is useful in coding event types alongside

the target and source, as a delegated event model used in many computer programs like

9.7. Partial behavioral action model 129

operational systems, thus turning the action pair into a tuple, ordered list of elements, of

the form (𝑎𝑖,𝑠𝑖,𝑡𝑖), where 𝑎𝑖 is the event type, 𝑠𝑖 ∈ [1, 1125] the source of the action for all

possible cards on the game and 𝑡𝑖 ∈ [1, 1125] the target for all possible cards on the game.

It is hard to know exactly how many event types exist in the game, thus it is unfeasible to

code all of them inside 𝑎𝑖. To tackle that, each possible value of 𝑎𝑖 was summarized in

categories of events, where four main categories were created and defined as follows: 1)

play card; 2) battlecry; 3) discover; 4) physical attack. When using categories, each 𝑎𝑖 will

be inside the interval [1,4].

9.7 Partial behavioral action model

A behavioral action model is composed of low level behaviors, where each behavioral

action depicts an entrance in the action vector 𝐴 = {𝑎1, ..., 𝑎𝑙}, being each 𝑎𝑖 ∈ 𝐴, a

composite action and 𝑙 the total number of composite actions. Each 𝑎𝑖 in 𝐴 is a binary

value that represents if the actions are being used or represented by 𝐴, thus the reactive

and temporal learning models from the FALCON architecture can be used. Each behavior

from a behavioral model is defined by a symbolic system, algorithm, created by a specialist

and that helps an agent in deciding what to do when performing.

For the proposed Hearthstone model, each behavior from 𝐴 is defined as a greedy

policy, where the best action is selected considering a local impact on the game. Fur-

thermore, the proposal classifies each possible Hearthstone behavior with the categories:

physical attack; battlecry; discover ; equip weapon; hero power ; spell; play card action with

microfeature; play card action without microfeature; face behavior ; and end turn. Moreover,

the play card action without microfeature and play card action with microfeature are

responsible in playing cards that contains or not, respectively, a determined microfeature.

All the behaviors are summarized in Table 1.

9.8 Action observability and selection

In contrast to the proposed compact model, the behavioral model assumes that an

algorithm selects what actions is the best for a behavior type. With this model, at each

State, an agent will have to select the best behavior to perform, however each behavior

can handle a list of actions from its type. For example, inside the Physical Attack behavior

there can be various sources and various targets, thus it has a list of actions where it can

130 Chapter 9. Hearthstone models for an Adaptive Neural Network

Table 1 – Proposed behavioral model for Hearthstone with behaviors types
and its respective goals.

Behavior Goal

Physical Attack
Select a card from the player’s
battlefield. Select and attack

the target with the selectet card.

Battlecry Select a card with battlecry
and play it.

Discover Select one card from the
discovery mechanics.

Equip Weapon Select a weapon card and
use it.

Hero Power Use hero power.
Spell Select a spell card and use it.

Play card without MF
Select a card that does not
contain a MF from a list of
available MFs and play it.

Play card with MF
Select a card that contain a
specified MF from a list of
available MFs and play it.

Face
Give the maximum amount of

damage to the enemy hero with
all the player have.

End turn Finishes the player turn.

Source: By the Author.

pick one to be performed by an agent. By doing that, it can not be guaranteed to select

proper actions.

9.9 Extracting microfeatures for Hearthstone

There are two major behaviors from the proposed model that give the ability

to an agent to play cards with certain microfeatures. In order to select microfeatures,

each card from the game is represented with semantic networks. All networks from all

cards are created from frames obtained directly from the Hearthstone simulator called

Metastone. This model of coding features is used to represent cards as semantic objects

to use their symbols to filter what cards are allowed to be used at each behavior. All

microfeatures from all cards in the game were obtained through a descendant parser

that seeks information from each card inside their frames for later being assembled in

its semantic network. According to the complete information acquired from this process,

the game posses 664 microfeatures that are shared between all cards. From all the 664

9.10. Utility value of a State for Hearthstone 131

microfeatures, 42 were selected through feature threshold, that selects features with a

variance greater than a threshold 𝑡 for a microfeature 𝑚𝑓𝑐𝑜𝑢𝑛𝑡 count variable in all cards.

The result of the microfeatures extraction method is a semantic network for each card

available on the game. It resembles a histogram for each card microfeature list inside its

semantic network.

Cards are delegated through all behaviors from Table 3 by checking if at least one

of their microfeatures, that are present inside their semantic network, is compatible with

the behavior type. If compatible, the behavior is said to be able to perform that action

and is used by an agent to guide itself through its Time Flow.

9.10 Utility value of a State for Hearthstone

All the proposed HearthBot versions presented on the subsequent sections to

perform, an utility function needs to be used to evaluate environments obtained from

a State. The proposed utility function for Hearthstone was created based on a base

value function obtained from the Metastone simulator version 1.2.0, where a perceived

environment model is evaluated according to the value of each minion and player stats.

The base utility function, obtained from Metastone, is formed as,

𝑢 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1 if the enemy is destroyed

−1 if the player is destroyed

Δℎ𝑝 + Δ3ℎ𝑎𝑛𝑑 + Δ2𝑚𝑖𝑛𝑖𝑜𝑛𝑠 + Δ𝑠𝑐𝑜𝑟𝑒 otherwise

(55)

where Δℎ𝑝 is the difference from player 1 hp to player 2 hp, Δℎ𝑎𝑛𝑑 is the difference from

player 1 total cards in hand from player 2 total cards in hand, Δ𝑚𝑖𝑛𝑖𝑜𝑛𝑠 is the difference

from player 1 total minions from player 2 total minions, and Δ𝑠𝑐𝑜𝑟𝑒 is the difference from

the minion score calculated for all player 1 minions and all player 2 minions. It is essential

to note that, the variable 𝑠𝑐𝑜𝑟𝑒 is calculated with Equation 56 and it embodies the raw

value of a minion,

𝑠𝑐𝑜𝑟𝑒 =
∑︁

𝑖

(𝑏𝑎𝑠𝑒𝑖 + 2𝑡𝑖 + 0.5𝑤𝑖 + 1.5𝑑𝑖 + 𝑠𝑝𝑖 + 1𝑒𝑖 + 1𝑠𝑖 + 1.5𝑢𝑡𝑖 × 𝑏𝑎𝑠𝑒𝑖) (56)

132 Chapter 9. Hearthstone models for an Adaptive Neural Network

where 𝑏𝑎𝑠𝑒𝑖 = (𝑚𝑖𝑛𝑖𝑜𝑛ℎ𝑝)𝑖 + (𝑚𝑖𝑛𝑖𝑜𝑛𝑎𝑡𝑡𝑎𝑐𝑘)𝑖 + (𝑚𝑖𝑛𝑖𝑜𝑛𝑠𝑝𝑒𝑙𝑙𝑑𝑎𝑚𝑎𝑔𝑒)𝑖, and where

𝑡𝑖, 𝑤𝑖, 𝑑𝑖, 𝑠𝑝𝑖, 𝑒𝑖, 𝑠𝑖, and 𝑢𝑡𝑖 are binary values that represents the presence or ab-

sence of the symbols 𝑡𝑎𝑢𝑛𝑡, 𝑤𝑖𝑛𝑑𝑓𝑢𝑟𝑦, 𝑑𝑖𝑣𝑖𝑛𝑒𝑠ℎ𝑖𝑒𝑙𝑑, 𝑠𝑝𝑒𝑙𝑙𝑑𝑎𝑚𝑎𝑔𝑒, 𝑒𝑛𝑟𝑎𝑔𝑒𝑑, 𝑠𝑡𝑒𝑎𝑙𝑡ℎ, and

𝑢𝑛𝑡𝑎𝑟𝑔𝑒𝑡𝑎𝑏𝑙𝑒𝑏𝑦𝑠𝑝𝑒𝑙𝑙𝑠, respectively, on a evaluated minion 𝑖.

The base function represented by Equations 55 and 56 works inside an infinite

range, since minion enhancements, from the game, are not countable. Furthermore, this

utility function can not be used as presented by Q-learning methods, since it does not

represent a magnitude in which a Q-value should be adjusted with.

To tackle that problem, it is proposed that the utility value should be computed

with Equation 57,

𝜁𝑡(𝑖) =

⎧⎪⎪⎨⎪⎪⎩
1 if the player wins the game

0.5 + 𝑛𝑜𝑟𝑚(𝑢𝑡(𝑖))− 𝑛𝑜𝑟𝑚(𝑢𝑡(𝑖+1))
2 otherwise

(57)

where if the player wins the game from the move performed on the State 𝑡(𝑖) from a State

𝑖, then it will return 1, otherwise, it will return a number around a base reward equals to

0.5, where 𝑛𝑜𝑟𝑚 is a feature scaling function represented by Equation 58, and 𝑢𝑡(𝑖) and

𝑢𝑡(𝑖+1) being the computed utility values from the State 𝑡(𝑖) and the newly obtained State

𝑡(𝑖+1),

𝑛𝑜𝑟𝑚(𝑟) = 𝑚𝑖𝑛 + 𝑟

𝑚𝑎𝑥
(58)

where 𝑟 is the computed reward that will be normalized, 𝑚𝑖𝑛 the minimum observed

lower boundary for sampled 𝑢 values and 𝑚𝑎𝑥 being the maximum observed boundary for

sampled 𝑢 values.

9.11 Discussion

The hearthstone environment model is divided in a compact environment and

attribute curves models. In this research, the compact model and attribute curves model

are mixed together for HearthBots to understand a State. Moreover, the HearthBots

systems were deployed in various versions varying the model used to code its actions. By

deploying bots with different action coding styles, it was viable to verify the behavior of an

9.11. Discussion 133

agent that learns from scratch, by using a spectrum action coding, or that learns with the

help of small behaviors, by using a behavioral action coding. It is essential that rewards

need to be calculated, thus the utility value proposal is used to perceive rewards from

performing actions for all HearthBot agents. Furthermore, the Q-Learning is also adjusted

by proposed Q-Learning adjustment function for Hearthstone. Peculiarly, HoningStone has

been created with the HearthStone game definition itself, since it structures its information

as an ontology that is able to represent events and interaction between cards through

them. All the aforementioned systems are presented in Chapter 10.

135

10 HONINGSTONE AND HEARTHBOT SYSTEMS

This chapter presents all deployed solutions for HearthStone. It is divided in

5 sections, where section 1 presents the HoningStone system. Next, in Section 2 the

HearthBot is presented. Furthermore, Section 3 introduces the T-HearthBot. In addition,

in Section 4 the CTH-HearthBot, a Creative Hearthbot, is presented in details. Moreover,

the CTUH-HearthBot, a Creative Hearthbot based on the UAM, is introduced in Section

5. The other variants of HearthBots were not described into this chapter since they are

made by simple changing the learning algorithm or combining techniques deployed into

the T-HearthBot, CTH-HearthBot or CTUH-HearthBot.

10.1 HoningStone

In this section, it is presented HoningStone, a Hearthstone model for the GRASP

Honing system, proposed in Chapter 7, for the generation of creative card combos for

Hearthstone. The proposed symbolic Honing Network for Hearthstone is composed by

two forms of microfeature associations: intra and inter-clique. For the proposed example

depicted in Figure 26, bridges are seen as inter-clique relationships and are represented by

the dash yellow lines. In contrast, cliques from a super node are represented by intra-clique

relations. Each card from the proposed network represents a super node composed by

microfeatures, where each microfeature are cards semantics that were extracted from the

card behavior described in its text. The example showed in Figure 26, represents three

cards, A, B and C, and each indicate a super node from the Honing Network.

The main problem of the Honing GRASP model is that it need to be conceived by

an specialist, consequently each microfeature extracted from cards text was given by an

specialist.

In Figure 26, the card A is represented by the text Deal 2 Damage to a minion,

where the node microfeature Deal Damage was created to constitute its semantics. The

created microfeature is related to card C, since the target of Deal Damage is a minion.

The proposed Honing network ignores values and codes semantics in order to simplify the

random construction generation process and evaluation. As a result from the interaction

between elements in the proposed honing network for Hearthstone, the GRASP honing

will be able to identify which cards combines with others by recognizing their semantic

relationship.

136 Chapter 10. HoningStone and HearthBot systems

Figure 26 – Hearthstone HoningNetwork model.

Source: By the Author.

10.1.1 Creativity Metric for GRASP evaluation

In this research, a simplified version of a creativity metric based on the Bayesian

surprise and an efficiency metric, proposed by (JUNIOR et al., 2016) is used to guide the

HoningStone system. A model to represent each combo was also defined by (JUNIOR et

al., 2016) and it calculates both metrics. In this model, called Regent Dependent, each

combo is composed of cards, which in turn has effects. Each effect is modeled as a pair

𝑃 (𝑎𝑏𝑖𝑙𝑖𝑡𝑦, 𝑡𝑎𝑟𝑔𝑒𝑡) which has a value 𝑣. For instance, "destroy 2 minions", is represented

as 𝑃 (𝑑𝑒𝑠𝑡𝑟𝑜𝑦, 𝑚𝑖𝑛𝑖𝑜𝑛) = 2. Hearthstone produces 190 distinct pairs when combining all

abilities and targets from the existing card set. These pairs exhibit all kinds of effects that

a combo can deliver. Thus, each combo can be modeled as an array of these 190 pairs,

where the value 𝑣 of each pair, which is extracted from the effect, indicates the intensity of

the respective effect. If an effect appears more than once in a combo, its values are added

and stored on its respective pair. Based on this combo representation, the surprise and

efficiency metrics are then described.

Firstly, the Bayesian surprise enables to evaluate how much new is an artifact

compared to known ones. In particular, the surprise of a combo pair 𝑐𝑖 is calculated by

equation 13, where 𝜇𝑖 is the new observed value of that pair, 𝜎2 is the variance and �̄�

is the average, both calculated based on all known combos pair 𝑐𝑖 values. The complete

10.1. HoningStone 137

surprise of a combo is the sum of all 𝑐𝑖, normalized using the feature scaling technique to

yield its value to the range [0,1].

The efficiency metric proposed by (JUNIOR et al., 2016) is based on a synergy

graph, created by an specialist, for each combo. However, in order to assemble a similar

structure without handcrafted structures, in HoningStone the efficiency of a combo is

measured through k-Nearest Neighbors algorithm using a database of combos and their

respective win rate. Each combo from this dataset posses an associated win rate calculated

by the number of 𝑤𝑖𝑛𝑠 divided by the number of 𝑚𝑎𝑡𝑐ℎ𝑒𝑠 extracted from community

web sites. A new combo win rate is estimated by averaging the win rate of its neighbors

returned by the k-Nearest Neighbors, which uses the euclidean distance. The efficiency is

represented between [0,1], thus not requiring normalization.

Lastly, the creativity metric is calculated by equation 59, where efficiency 𝑒 and

surprise metric 𝑠 are added representing. The second expression is used to avoid that

artifacts with high efficiency and low surprise, or vice-versa, score a high creativity, by

penalizing an artifact creativity value as the difference of efficiency and surprise increases.

𝑐𝑟𝑒𝑎𝑡𝑖𝑣𝑖𝑡𝑦(𝑒, 𝑠) = 𝑒 + 𝑠−
√︁
|𝑒− 𝑠| (59)

This creativity metric, with range [0,2], guides the analytic mode to add cards

which make a combo more surprising and at the same time more efficient.

138 Chapter 10. HoningStone and HearthBot systems

10.2 HearthBot

In this Section is presented HearthBot, a Hearthstone agent that can autonomously

learn and play Hearthstone. The proposed HearthBot is an Hearthstone agent created to

verify the win rate convergence of the proximity ANN, proposed in Chapter 8, where its

mechanisms are used to predict actions according to an observed environment.

10.2.1 Adaptive Neural Network architecture for HearthBot

The architecture of HearthBot is depicted in Figure 27, where the environment E is

composed by the proposed Compact environment model. The compact model was used

since a graphics processing unit bus transfer speed can not handle large amounts of data

transfers fast enough, where it can cause a delay when processing States from a Time

Flow. Furthermore, the proposed model follows the FALCON topology, but it does not

uses any temporal learning technique since it is used to evaluate the proximity ANN.

In order to assemble HearthBot, all fields from the environment model were decom-

posed into four sub fields 𝑐1 to 𝑐4. By decomposing the environment into more than one

field it’s expected to prevent variables to being underrated when categorizing the received

stimulus. The underrating happens when variables working within different ranges, inside

the normalized interval [0,1], are treated by the categorization mechanism as working on

the same range, thus resulting in inefficient categorizations.

To represent actions, a full compact action model is used, since the behavior of

the agent will not be influenced by the lack of observability from a partial behavioral

model. The action field is represented by 𝑐5, but it alone does not resemble a FALCON

architecture. To tackle that, a reward field 𝑐6 is used to model a virtual POMDP as a

FALCON input model.

10.2.2 HearthBot as a Metastone interface

HearthBot architecture is illustrated in Figure 28, where it acts as a Metastone

interface, that communicates with the proposed ANN, inside the GPU, through the

Send and Receive interfaces. The Send interface is used to request the processing of the

environment E, Action A and Reward R coded by the fields 𝑐1 to 𝑐6, and the Receive

gives a response to HearthBot as a prediction. This received prediction is then used by

10.2. HearthBot 139

Figure 27 – HearthBot architecture for the proximity ANN.

Source: By the Author.

HearthBot to make a decision of what action to perform next for all turns in a game until

someone gets defeated.

Figure 28 – Component diagram of HearthBot as a Metastone Behavior in-
terface.

Source: By the Author.

10.2.3 HearthBot algorithm

HearthBot agent 3-step routines are performed through the Behavior interface, as

depicted in Figure 28. Its algorithm, showed in Figure 4, relies in sensing the Hearthstone

environment and coding it through an environment, action and reward coding mechanisms

introduced in Chapter 9. The input parameter 𝑒 represents the perceived environment

from a Hearthstone game, 𝑎 representing all the possible actions that the agent can execute

at a turn, 𝑟𝑒𝑎𝑠𝑜𝑛𝑒𝑟 as the proposed multi-channel ANN, 𝑙𝑟 as a local reasoner to simulate

the executed action, and 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 as a boolean to identify if the network is in learning

mode.

In order to achieve a prediction, all the variables are coded, as a message string

140 Chapter 10. HoningStone and HearthBot systems

to be sent to the ANN input variables at 𝐼 in order to be normalized and copied to the

activity vector 𝑋. After sending the message, HearthBot can obtain a response string

using the Receive interface from the ANN on the GPU if the previous sending message

was in prediction mode.

Algorithm 4: HearthBot as a Metastone Behavior interface

Input: Environment 𝐸, PossibleActions 𝐴, ANN 𝑟𝑒𝑎𝑠𝑜𝑛𝑒𝑟, LocalReasoner 𝑙𝑟, Boolean
𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔
Output: Action to use 𝑎𝑐𝑡

1: Action 𝑎𝑐𝑡 = NULL
2: if (𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔) then
3: 𝑎𝑐𝑡 = SelectAction(𝐴)
4: Reward 𝑟𝑜𝑙𝑑 = GetReward(𝐸)
5: Reward 𝑟𝑛𝑒𝑤 = 𝑙𝑟.SimulateAction(𝑎𝑐𝑡)
6: Reward 𝑟𝑟𝑒𝑎𝑙 = 𝑟𝑛𝑒𝑤 − 𝑟𝑜𝑙𝑑

7: 𝑟𝑒𝑎𝑠𝑜𝑛𝑒𝑟.Send(𝐸, 𝑎𝑐𝑡, 𝑟𝑟𝑒𝑎𝑙, 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔)
8: else
9: Rewards 𝑅 = ∅

10: for 𝑎𝑖 ∈ 𝐴 do
11: 𝑟𝑒𝑎𝑠𝑜𝑛𝑒𝑟.Send(𝐸, 𝑎𝑖, 𝑟𝑟𝑒𝑎𝑙, 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔)
12: Reward 𝑟 = 𝑟𝑒𝑎𝑠𝑜𝑛𝑒𝑟.Receive() // call local reasoner proposed in Section 9.10
13: 𝑅.add(𝑟)
14: end for
15: 𝑎𝑐𝑡 = max(𝐴, 𝑅)
16: end if
17: Return 𝑎𝑐𝑡

Source: By the Author.

When in learning mode, the algorithm selects an action 𝑎𝑖 from an action selection

policy through the function 𝑆𝑒𝑙𝑒𝑐𝑡𝐴𝑐𝑡𝑖𝑜𝑛, this action is subsequently used to calculate the

initial reward 𝑟𝑜𝑙𝑑. On the original FALCON, the immediate reward for an executed action

𝑎𝑖 is calculated by a direct response from an environment, but this could lead to false

rewards. It stems from the fact that an immediate reward does not consider time changes

between the environment 𝐸𝑡 to 𝐸𝑡+1. This research overcomes that by calculating the

delta reward from the current 𝐸𝑡 to the next 𝐸𝑡+1, thus leading to more precise immediate

reward calculations for an executed action 𝑎𝑖. The full reward for the executed action 𝑎𝑖 is

calculated through the help of a local reasoner. This local reasoner acts as a local solution

searcher and it is a function from Metastone that permits to simulate actions without

changing an environment 𝐸. After the new reward calculation in 𝑟𝑛𝑒𝑤, the real one can be

10.2. HearthBot 141

calculated by 𝑟𝑟𝑒𝑎𝑙 = 𝑟𝑛𝑒𝑤 − 𝑟𝑜𝑙𝑑. When 𝑟𝑟𝑒𝑎𝑙 > 0, then there was a positive change in favor

to the agent, otherwise the change was negative.

If not in learning mode, the HearthBot algorithm will try to predict the best

reward for all the possible actions 𝐴. This mode of the algorithm resembles the FALCON,

one proposed by (TAN, 2004) to control agents in real time. The basic procedure starts

predicting all the rewards for all the possible actions 𝑎𝑖 ∈ 𝐴 on the environment 𝐸, then

selecting an action with the maximum predicted reward 𝑟𝑖 ∈ 𝑅 through the function

𝑚𝑎𝑥(𝑎𝑖, 𝑟𝑖) for all 𝑎𝑖 ∈ 𝐴. This action is then, returned to the agent to be executed as a

decision. It is critical to note that all the rewards are calculated by a heuristic function

provided by Metastone. This heuristic function considers the variables codified by 𝐸 to

calculate the score based on the proposed utility value by Equation 57.

142 Chapter 10. HoningStone and HearthBot systems

10.3 Temporal HearthBot

In this Section is presented the T-HearthBot, where it encompasses the proposed

environment and action models used with the Q-Learning or a Reactive model for a

FALCON architecture. Since the T-HearthBot uses a temporal technique it is expected

a low cognitive code growth, thus it is not mandatory for T-HearthBot to be deployed

directly into a graphics processing unit as the HearthBot in order to obtain a hardware

acceleration when performing. As depicted in Figure 29, the T-HearthBot is composed by

three main fields, as a FALCON architecture, where the environment field is composed

by four models for each player. The four models used for T-HearthBot are: 𝑒, obtained

from a Compact environment; 𝑐𝑣𝑎, obtained from Attribute curves for all minions attack;

𝑐𝑣𝑑, obtained from Attribute curves for all minions defense; and 𝑐𝑣𝑚𝑓 , obtained from a

Numeric model for symbols extracted from semantic networks for all minions.

Figure 29 – Field architecture for T-HearthBot.

Source: By the Author.

The proposed T-HearthBot is deployed with the two action models: Full compact

and Partial behavioral. When using each of the proposed models, T-HearthBot performs

as a FALCON system, thus a reward field is also assembled in its feature layer. Each field

from the T-HearthBot is coded with ART neurons, but if the used action model is the

compact one, then the proximity neurons, from the proximity ANN proposed in Chapter 8,

are used instead to prevent over generalization from an action spectrum model.

10.3. Temporal HearthBot 143

10.3.1 Temporal Reactive Algorithm for T-HearthBot

The reactive temporal algorithm for T-HearthBot, presented in Algorithm 5, is

assembled as a reactive FALCON, obtained from (TAN, 2004), and it is divided into two

steps: performing and learning. Its input parameters are an environment 𝐸, an available

action set 𝐴, the operating ANN, a local reasoner 𝑙𝑟 and an exploration threshold 𝑒. Its

output parameters are an environment observation 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐸𝑛𝑣𝑉 𝑒𝑐, the selected action

from the process inside the variable 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐴𝑐𝑡𝑖𝑜𝑛, the calculated rewards 𝑟𝑛𝑒𝑤 and 𝑟𝑜𝑙𝑑

and the operating ANN.

Algorithm 5: Reactive FALCON algorithm for T-HearthBot

Input: 𝐸, 𝐴, ANN, 𝑙𝑟, 𝑒
Output: 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐸𝑛𝑣𝑉 𝑒𝑐, 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐴𝑐𝑡𝑖𝑜𝑛, 𝑟𝑛𝑒𝑤, 𝑟𝑜𝑙𝑑, ANN

1: 𝑟𝑜𝑙𝑑 = 𝑟𝑛𝑒𝑤

2: explore = rand() // rand function generates a random number between 0 and 1
3: currentEnvVec = buildEnvironmentVec(𝐸)
4: selectedAction = null
5: if (explore < 𝑒) then
6: selectedAction = randomAct(𝐴) // randomAct function selects a random action
7: else
8: while (selectedAction == null) do
9: actionToPredictVec = directAccess()

10: rewardVec = {1.0, 0.0}
11: ANN.setActivity(currentEnvVec, actionToPredictVec, rewardVec)
12: prediction = ANN.predict()
13: selectedAction = maxAct(prediction.actionField)
14: if (invalid(selectedAction)) then
15: // verify if the selected action can be performed
16: selectedAction = null
17: end if
18: if (𝐴 != contains(selectedAction)) then
19: actionToPredictVec = generateAvailable(𝐴)
20: ANN.resetLast(actionToPredictVec)
21: selectedAction = null
22: end if
23: end while
24: end if
25: // call local reasoner proposed in Section 9.10
26: 𝑟𝑛𝑒𝑤 = 𝑙𝑟.simulateAction(selectedAction)

Source: Adapted from (TAN, 2004).

The performing step is responsible for retrieving a predicted action mask from a

144 Chapter 10. HoningStone and HearthBot systems

given observed environment State in 𝐸. This action mask will be predicted if the 𝑒𝑥𝑝𝑙𝑜𝑟𝑒

variable goes bellow the exploration threshold 𝑒. In order to predict an action mask, the

𝑟𝑒𝑤𝑎𝑟𝑑𝑉 𝑒𝑐 is configured as [1,0] to get the max reward prediction. Furthermore, the

𝑎𝑐𝑡𝑖𝑜𝑛𝑇𝑜𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑉 𝑒𝑐 represents what action will be predicted and it is assembled with the

direct access method through function 𝑑𝑖𝑟𝑒𝑐𝑡𝐴𝑐𝑐𝑒𝑠𝑠. The 𝑠𝑒𝑡𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 function is used to

assemble the activity in order to fulfill a prediction for the reward field. Conclusively, a

prediction is achieved when calling the 𝑝𝑟𝑒𝑑𝑖𝑐𝑡 function from the ANN.

The while mechanism in Algorithm 5 is used to prevent non existent actions into

being selected from the prediction mechanism, thus if that happens the 𝑟𝑒𝑠𝑒𝑡𝐿𝑎𝑠𝑡 function

will force the network into replacing the most recent predicted neuron action mask with

a valid one, created with the 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 function. It is essential to note that the

variables 𝑟𝑜𝑙𝑑 and 𝑟𝑛𝑒𝑤 are configured at the start and end of the algorithm, respectively,

where the 𝑟𝑛𝑒𝑤 variable is obtained through the utility function, described in Section 9.10,

and is calculated within a simulator.

The learning step is performed after the performing step, since it is bounded to the

performing step output parameters. The learning step is responsible to call the routines that

will permit to perform the neuron reinforcement, erosion, decay and prunning described

at Section 6. In order to perform any neuron reinforcement routines, the agent needs to

suffer a positive feedback change. This feedback change is controlled by the condition

𝑟𝑛𝑒𝑤 > 𝑟𝑜𝑙𝑑, where if true it will write, into the ANN, the received reward, 𝑟𝑛𝑒𝑤, and the

performed action, 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐴𝑐𝑡𝑖𝑜𝑛. If the feedback change condition returns false, then the

agent will reset the action mask from the observed environment stored in 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐸𝑛𝑣𝑉 𝑒𝑐.

The reset will ensure that the 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐴𝑐𝑡𝑖𝑜𝑛 is a bad choice when interacting within 𝐸.

The reinforcement routine is called by the reinforcement function inside the ANN

and the erosion is called by the erosion function, where either need to be preceded by

the constructions of the activity vectors inside the ANN 𝐹1 feature layer through the

𝑠𝑒𝑡𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 function. At the end of the algorithm, the neuron decay and prunning are

called by the neuronDecay and neuronPrunning functions inside the ANN.

10.3.2 Temporal Q-Learning Algorithm for T-HearthBot

The Q-learning algorithm for the T-HearthBot incorporates the temporal learning

method and was assembled based on the pseudo algorithm presented in (WANG; TAN,

10.3. Temporal HearthBot 145

Algorithm 6: Reactive FALCON learning algorithm for T-HearthBot

Input: 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐸𝑛𝑣𝑉 𝑒𝑐, 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐴𝑐𝑡𝑖𝑜𝑛, 𝑟𝑛𝑒𝑤, 𝑟𝑜𝑙𝑑, ANN
Output:

1: if (𝑟𝑛𝑒𝑤 > 𝑟𝑜𝑙𝑑) then
2: // positive change block
3: actionToPredictVec = buildAct(selectedAction)
4: rewardVec = {𝑟𝑛𝑒𝑤, 1− 𝑟𝑛𝑒𝑤}
5: ANN.setActivity(currentEnvVec, actionToPredictVec, rewardVec)
6: ANN.reinforcement()
7: else
8: // negative change block
9: actionToPredictVec = buildResetAction(selectedAction)

10: rewardVec = {1− 𝑟𝑛𝑒𝑤, 𝑟𝑛𝑒𝑤}
11: ANN.setActivity(currentEnvVec, actionToPredictVec, rewardVec)
12: ANN.erosion()
13: end if
14: ANN.neronDecay()
15: ANN.neuronPrunning()

Source: Adapted from (TAN, 2004).

2015). In this research it was divided into three parts: sensory to action; action inhibition;

and learning. As the reactive model, it receives an environment 𝐸, a list of possible actions

to perform in 𝐴, the operating ANN, the local reasoner 𝑙𝑟, and the exploration threshold 𝑒.

It outputs a calculated immediate reward 𝑟, the predicted Q-value 𝑄𝑣𝑎𝑙𝑢𝑒, a copy of the

environment 𝐸 inside 𝑠𝑜𝑢𝑡, and a copy of the selected action inside 𝑎𝑜𝑢𝑡, where all output

parameters are used on the subsequent steps of the algorithm.

The algorithm starts with the sensory to action step, described in Algorithm 7,

where it will decide in exploring or exploiting. If exploiting, it will take a random action

based on the threshold 𝑒, otherwise it will perform an action inhibition in order to select

the best action for the observed environment 𝐸. The functions buildEnvironmentVec and

buildAct are responsible to assemble the semantic symbols into feature vectors as illustrated

in Figure 12.3.1. Furthermore, the calculateQValue function calculates the Q-value of the

obtained prediction for a given activity vector configured by setActivity function. At the

end of the algorithm, the selected action, 𝑎𝑜𝑢𝑡, predicted Q value, 𝑄𝑣𝑎𝑙𝑢𝑒, immediate

reward calculated through simulateAction function, 𝑟, and used State, 𝑠𝑜𝑢𝑡, are configured

as outputs for the next step.

The action inhibition step is responsible for selecting the best observed Q value for

a given observation 𝐸 and possible actions 𝐴. It receives all output parameters obtained

146 Chapter 10. HoningStone and HearthBot systems

Algorithm 7: FALCON Q-learning sensory to action step

Input: 𝐸, 𝐴, ANN, 𝑙𝑟, 𝑒
Output: 𝑟, 𝑄𝑣𝑎𝑙𝑢𝑒, 𝑠𝑜𝑢𝑡, 𝑎𝑜𝑢𝑡

1: explore = rand() // rand function generates a random number between 0 and 1
2: if (explore < 𝑒) then
3: selectedAction = randomAct(𝐴) // randomAct function selects a random action

from A
4: currentEnvVec = buildEnvironmentVec(𝐸)
5: actionToPredictVec = buildAct(selectedAction)
6: rewardVec = {1.0, 1.0}
7: ANN.setActivity(currentEnvVec, actionToPredictVec, rewardVec)
8: prediction = ANN.prediction()
9: maxQ = calculateQValue(prediction.rewardVec) // calculate the Q value from the

prediction
10: else
11: ActionInhibition(IN 𝐸, IN 𝐴, IN ANN, OUT selectedAction, OUT 𝑚𝑎𝑥𝑄)
12: end if
13: 𝑎𝑜𝑢𝑡 = 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐴𝑐𝑡𝑖𝑜𝑛
14: 𝑄𝑣𝑎𝑙𝑢𝑒 = 𝑚𝑎𝑥𝑄
15: 𝑟 = 𝑙𝑟.simulateAction(selectedAction) // call local reasoner proposed in Section 9.10
16: 𝑠𝑜𝑢𝑡 = 𝐸

Source: Adapted from (WANG; TAN, 2015).

from the sensory to action and it outputs a predicted Q-value inside 𝑄𝑣𝑎𝑙𝑢𝑒 and the

selected action inside 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐴𝑐𝑡𝑖𝑜𝑛.

The inhibition step starts by configuring the observed environment into 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐸𝑛𝑣𝑉 𝑒𝑐

variable through buildEnvironmentVec function. After its initialization, it will seek for

each action 𝑎𝑖 ∈ 𝐴, the best predicted Q value and stores it into 𝑚𝑎𝑥𝑄. The selected

action is stored inside 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐴𝑐𝑡𝑖𝑜𝑛 variable and it will be used as an output for this

step. The buildAct function is responsible for assembling the action vector, as in step 1,

and the prediction function will force the working ANN to predict the Q value according

to the FALCON architecture. At the end, the algorithm configures the max predicted Q

value into 𝑄𝑣𝑎𝑙𝑢𝑒 and uses it as an output parameter alongside with the 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐴𝑐𝑡𝑖𝑜𝑛,

used to perform.

At the final step, learning, T-HearthBot will learn based on the temporal difference.

This step is responsible for calculating the 𝑇𝐷𝐸𝑟𝑟, temporal difference error, in order to

adjust the simulated POMDP weights from each performed action during its performance.

It receives the output of the sensory to action as input parameters and also it has three

control flags: 𝑢𝑠𝑒𝑅𝑒𝑤𝑎𝑟𝑑, responsible to decide if it calculates the immediate reward or not;

10.3. Temporal HearthBot 147

Algorithm 8: FALCON Q-learning Action Inhibition

Input: 𝐸, 𝐴, ANN, 𝑄𝑣𝑎𝑙𝑢𝑒, selectedAction
Output: 𝑄𝑣𝑎𝑙𝑢𝑒, selectedAction

1: currentEnvVec = buildEnvironmentVec(𝐸) // assemble environment vec
2: 𝑚𝑎𝑥𝑄 = − inf
3: selectedAction = null
4: for (Action 𝑎𝑖 ∈ 𝐴) do
5: actionToPredictVec = buildAct(𝑎𝑖)
6: rewardVec = {1.0, 1.0}
7: ANN.setActivity(currentEnvVec, actionToPredictVec, rewardVec)
8: prediction = ANN.prediction()
9: predictedQ = calculateQValue(prediction.rewardVec)

10: if (predictedQ > maxQ) then
11: maxQ = predictedQ
12: if (selectedAction != NULL) then
13: selectedAction = 𝑎𝑖

14: end if
15: end if
16: end for
17: 𝑄𝑣𝑎𝑙𝑢𝑒 = 𝑚𝑎𝑥𝑄

Source: Adapted from (WANG; TAN, 2015).

𝑏𝑜𝑢𝑛𝑑𝑒𝑑𝑄, that tells if the algorithm will use the bounded Q-learning; and 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑄,

that tells if it will use the threshold Q-learning.

The learning step starts by calculating the error for a predicted Q value from 𝑡(𝑖)

and a new Q value from 𝑡(𝑖 + 1), where 𝑡(𝑖) is the State at the State 𝑖 and 𝑡(𝑖 + 1) a State

from the State 𝑖 + 1 from the game’s Time Flow. It then rescales a calculated learning

value, 𝑄𝑙𝑒𝑎𝑟𝑛, using the bound rule or the threshold Q-learning method. At the end of

this stage, the algorithm assembles the activity vector through buildEnvironmentVec and

buildAct functions, and set the ANN activity through setActivity function in order to learn

by calling the ANN learn function.

10.3.3 Discussion

When performing through the Q-learning algorithm, some precautions need to be

taken in order to guarantee its integrity. Firstly, it is essential to develop an external

mechanism that enable to store previously predicted Q values in order to calculate the

steps from the learning stage properly. Secondly, it is important in assembling a list of

possible actions to perform, since it will facilitate the algorithm mechanism in search for

148 Chapter 10. HoningStone and HearthBot systems

Algorithm 9: FALCON Q-learning learning

Input: 𝑟, 𝑄𝑜𝑙𝑑, 𝑄𝑛𝑒𝑤, ANN, 𝑠𝑜𝑢𝑡, 𝑎𝑜𝑢𝑡, 𝑢𝑠𝑒𝑅𝑒𝑤𝑎𝑟𝑑, 𝑏𝑜𝑢𝑛𝑑𝑒𝑑𝑄, 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑄
Output:

1: 𝑇𝐷𝑒𝑟𝑟 = 𝑟 + 𝛾 *𝑄𝑛𝑒𝑤 −𝑄𝑜𝑙𝑑

2: Δ𝑄 = 𝛼 * 𝑇𝐷𝑒𝑟𝑟
3: 𝑄𝑙𝑒𝑎𝑟𝑛 = 0
4: if (𝑏𝑜𝑢𝑛𝑑𝑒𝑑𝑄) then
5: 𝑄𝑙𝑒𝑎𝑟𝑛 = 𝑄𝑣𝑎𝑙𝑢𝑒 + Δ𝑄 * (1−𝑄𝑣𝑎𝑙𝑢𝑒)
6: else
7: if (𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑄) then
8: 𝑄𝑙𝑒𝑎𝑟𝑛 = 𝑄𝑣𝑎𝑙𝑢𝑒 + Δ𝑄
9: 𝑄𝑙𝑒𝑎𝑟𝑛 = 𝑚𝑖𝑛(1, 𝑄𝑙𝑒𝑎𝑟𝑛)

10: 𝑄𝑙𝑒𝑎𝑟𝑛 = 𝑚𝑎𝑥(0, 𝑄𝑙𝑒𝑎𝑟𝑛)
11: end if
12: end if
13: envToLearnVec = buildEnvironmentVec(𝑠𝑜𝑢𝑡)
14: actionToLearnVec = buildAct(𝑎𝑜𝑢𝑡)
15: rewardToLearnVec = {𝑄𝑙𝑒𝑎𝑟𝑛, 1−𝑄𝐿𝑒𝑎𝑟𝑛}
16: ANN.setActivity(envToLearnVec, actionToLearnVec, rewardToLearnVec)
17: ANN.learn()

Source: Adapted from (WANG; TAN, 2015).

an action to perform inside an action vector 𝐴. And finally, it is important in establishing

a main controller that controls variables like, 𝑒, driving the dynamics of all algorithms

steps.

10.4. Creative Temporal HearthBot 149

10.4 Creative Temporal HearthBot

In this Section is proposed the CTH-HearthBot as a combination of the proposed

HARP system, from Chapter 7.2, and the proposed T-HearthBot from Section 10.3. The

proposed CTH-HearthBot is based on the proposed HARP process, as depicted in Figure

30, where the POMDP FALCON is replaced by a T-HearthBot FALCON. The CTH-

HearthBot assumes both proposed action coding models from Chapter 9, thus when using

a compact model the proximity metric should be used as well.

Figure 30 – Field architecture for CTH-HearthBot.

Source: By the Author.

In the example showed in Figure 30, CTH-HearthBot received two stimulus: 𝑎

and 𝑏. The 𝑎 stimulus represents what environment the bot is seeing, by contrast the 𝑏

stimulus is a set composed by all possible actions that the bot can perform given a State

from Hearthstone. The prediction 𝑝1, obtained from the process is representing a valuable

prediction, that will optimize its overall reward over time, and the 𝑝2, represents a novel

prediction, that will lead to novel paths on the simulated POMDP.

The environment field in the feature layer on the expectation ART, from the process

depicted in Figure 30, is composed by the same environment field used on the T-HearthBot,

thus coding environments by relating them, exclusively, to one expectation neuron as

proposed in Section 7.2.

10.4.1 Algorithm for CTH-HearthBot

The main algorithm for CTH-HearthBot, presented in Algorithm 10, is composed

by one of the temporal algorithms presented for T-HearthBot and the structural control

algorithm proposed for the HARP process. Differently from the T-HearthBot algorithm, it

150 Chapter 10. HoningStone and HearthBot systems

receives an extra ANN called E-ANN as an input parameter. This E-ANN is an expectation

ART and it is used by the bot to behave according to the proposed HARP.

Algorithm 10: FALCON Q-learning sensory to action step for the HARP pro-
cess

Input: 𝐸, 𝐴, ANN, E-ANN, 𝑙𝑟, 𝑒
Output: 𝑟, 𝑄𝑣𝑎𝑙𝑢𝑒, 𝑠𝑜𝑢𝑡, 𝑎𝑜𝑢𝑡

1: explore = rand() // rand function generate a random number between 0 and 1
2: if (explore < 𝑒) then
3: E-ANN.setActivity(currentEnvVec)
4: prediction = E-ANN.prediction()
5: selectedAction = prediction.selectedAction
6: maxQ = calculateQValue(ANN, currentEnvVec, selectedAction)
7: else
8: ActionInhibition(IN 𝐸, IN 𝐴, IN ANN, OUT selectedAction, OUT 𝑚𝑎𝑥𝑄)
9: end if

10: 𝑎𝑜𝑢𝑡 = 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐴𝑐𝑡𝑖𝑜𝑛
11: 𝑄𝑣𝑎𝑙𝑢𝑒 = 𝑚𝑎𝑥𝑄
12: 𝑟 = 𝑙𝑟.simulateAction(selectedAction) // call local reasoner proposed in Section 9.10
13: 𝑠𝑜𝑢𝑡 = 𝐸

Source: By the Author.

The Algorithm 10 works in the same way as Algorithm 7, but the main difference

is the structure of the explore section controlled by the condition 𝑒𝑥𝑝𝑙𝑜𝑟𝑒 < 𝑒, where

the selected action is the most surprising one returned by the Expectation ART through

the 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 function. The Q-value of the surprising action is calculated with the

𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑄𝑉 𝑎𝑙𝑢𝑒 function, since the E-ANN does not hold a virtual Q-learning table. The

rest of the process works as a T-HearthBot algorithm, since the presented Algorithm 10

represents the starting point of reasoning. If assembling a reactive version of the CTH-

HearthBot, then the explore section of Algorithm 5 should be replaced by the explore

section of Algorithm 10, but ignoring the 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑄𝑉 𝑎𝑙𝑢𝑒 function.

10.5. Creative Temporal UAM HearthBot 151

10.5 Creative Temporal UAM HearthBot

In this Section, the CTUH-HearthBot architecture is presented, where it is mainly

composed by the proposed UAM-ANN used as the POMDP(Partially Markov Decision

Process) FALCON from the proposed HARP process. This bot takes creative decisions

over time considering the hierarchical model of an UAM-ANN, thus it represents the

HARP process as showed in the subsequent section.

10.5.1 Architecture

The proposed CTUH-HearthBots uses a UAM-ANN FALCON and a Expectation

ART. As illustrated in Figure 31, the proposed bot uses one UAM-ANN that is assembled

with 2 channels, where the channel 1, represented by the yellow rectangle, is responsible

to hold one action field and the channel Y, represented by the red rectangle, is holding

the environment and action fields. By assembling the UAM-ANN in that manner it is

expected for it to behave like a FALCON architecture, where the environment and reward

are predicted from channel Y.

Figure 31 – Field architecture for CTUH-HearthBot.

Source: By the Author.

For the this architecture, the action channel activity field is coded as the proposed

environment field for the T-HearthBot depicted in Figure 29. The environment channel is

assembled with 2 fields, where the first field is the action model field and the second one

is the reward field, thus representing the FALCON architecture.

152 Chapter 10. HoningStone and HearthBot systems

It is assumed that the action model used is the full compact, thus the action channel

is assembled as proximity neurons, those which are activated by the proximity metric.

By contrast, if using the partial behavioral model, ART neurons, activated by fuzzy ART

metrics, are used instead. Furthermore, this kind of channel architecture assumes that

there are more environments than actions, thus the search space for environment will be

filtered by each represented action in action channel, thus reducing the search space and

coding more environment neurons if necessary.

The algorithm for the CTUH-HearthBot is composed by the presented algorithm

for the CTH-HearthBot, where the main difference is that the internal structure of the

POMDP FALCON is replaced by an UAM-ANN FALCON process proposed in Chapter 8.

Part IV

Experimental evaluation, results and conclusions

155

11 RESULTS

This chapter presents the evaluation for the research proposals in four sections.

Section 11.1 presents the HoningStone evaluations, where the proposed symbolic model

introduced in Chapter 7 is evaluated. Next, in Section 11.2 the Metastone simulator, used

to perform the analysis for all HearthBot versions, is presented. Next, Sections 11.3 and

11.4 present the HearthBot evaluation. All evaluations discussed in this chapter were

accomplished through the deployment of the Hearthstone models, introduced in Chapter

9, and are described in details on each section.

11.1 HoningStone evaluation

The HoningStone system itself was fully implemented in C++. In order to build

the honing network, a JSON file version 4.0.2 was utilized from 𝐻𝑒𝑎𝑟𝑡ℎ𝑠𝑡𝑜𝑛𝑒𝑗𝑠𝑜𝑛.𝑐𝑜𝑚

which contains all updated cards information. We created a script that extracts all pairs

and values by normalizing the effects words and handling all exceptions. It is important

to note that texts present very regular patterns in Hearthstone, so it is not required a

sophisticated natural language processing algorithm to extract these pairs. Once the pairs

are extracted, generating the honing network is quite straightforward. Each card name

(parent microfeature) is connected to its effects abilities (child microfeatures) forming

cliques. Each child microfeature is then connected to parent microfeatures that have a

type that matches the effect’s target. This procedure is repeated for all cards.

11.1.1 Experimental design

To evaluate HoningStone, 400 experiments were performed for each hero of the game,

described in Chapter 9, 10 executions for each of the 40 seeds (which is approximately the

number of cards specific to each hero). This generated 3600 sample points for HoningStone

and an additional 3600 points for the randomized greedy approach. We set the mana cost

limit to 10, which is the maximum allowed in a turn in Hearthstone, limited the combo

size to a maximum of 10 cards. The window size was set to 80% based on a sensitivity

analysis for both algorithms. The surprise and efficiency metrics based on a subset of 31000

distinct combos extracted from from 10000 decks played in more than 3 million matches

obtained from the various public websites. Each combo inherited the win rate of the deck

156 Chapter 11. Results

it was extracted from (if the combo was presented in different decks, it was assigned with

the arithmetic average of the decks win rate). In order to evaluate the efficiency of the

generated combos, the K-Nearest Neighbor model returned the five closest combos win

rate, which were then averaged.

11.1.2 Creative process assessment analysis

In this section, HoningStone is evaluated compared to the randomized baseline,

that generates combos picking random cards, for generating creative combos. Chart 1

shows the creativity metric which combines surprise and efficiency and it ranges from

0 to 2. In the randomized version the median for all heroes is around 0.3 with a small

difference between the first and third quartiles. This result indicates that the randomized

version is not capable of exploring the creativity space, commonly leading to poor creative

artifacts, although it generates a few outliers with moderate creativity. On the other hand,

HoningStone generates combos more creative than the randomized algorithm for all heroes,

where medians range from 0.4 to 1. Even when considering just outliers, the randomized

version is unable to generate few combos with more than 1.5 creativity, which is done by

HoningStone in most heroes.

Chart 1: HoningStone for combo generation.

Source: By the Author.

In particular, for Paladin, which presented very low surprise, as showed in Chart

2, the randomized version could not generate combos with surprise above 0.1. After

careful investigation on Paladin, is possible to observe that players tend to build the same

combos based on a few effects, which are usually efficient. This can guide our system to

11.1. HoningStone evaluation 157

efficient known solutions, rather than different ones is most cases, leading to low surprise.

However, HoningStone found ways to generate a few outliers with surprise near to one and

consequently with creativity above one. This result suggests that further improvements in

the honing network could lead to better exploration of these points.

Chart 2: HoningStone measured surprise for combo generation.

Source: By the Author.

Chart 2 shows that the randomized algorithm consistently generates combos that

has near zero surprise. This result reveals that when a high efficiency combo is randomly

generated, it is likely to have low surprise. Since the randomized algorithm evaluates

combos based on creativity, then combos with large discrepancy between surprise and

efficiency are poorly evaluated and not pursued. Due to the large combo space, the honing

associative mode was key for guiding the creative process into reducing this space to cards

that could actually be part of an efficient combo.

The proposed efficiency metric is based on the win rate of decks in actual games,

which are ruled by a matchmaking system. Inefficient decks are not used for more than

a few matches, so they are not included in our system. Due to this fact, our database

of combos is based on decks that present an average 0.5 win rate, which is confirmed as

depicted in Chart 3. Moreover, the K-Nearest Neighbor averages the five nearest neighbors

(combos) win rate, which is good for estimating never seen combos, but can also lead to

an unsatisfactory win rate for common combos presented in very different decks. Despite

the efficiency model limitations, Chart 3 shows that HoningStone is able to surpass

the performance of the randomized version for all heroes. In particular, for Warrior the

difference between medians is around 0.2, which was fundamental to make HoningStone

158 Chapter 11. Results

combos more creative than the ones from the randomized version, as illustrated in Chart

2.

Chart 3: HoningStone measured efficiency for combo generation.

Source: By the Author.

The results showed that HoningStone can generate combos that are more creative

than a greedy randomized algorithm. Although the combos generated by HoningStone are

certainly new and playable from an expert point of view, their efficiency has yet to be

proven in real games. Finally, the behavior generated from HoningStone indicates that

the modified GRASP can still be able to guide the objective function towards a better

solution, being local or global optima, after its adaptation to implement the described

processes by The Honing Theory.

11.2. Metastone behavior analysis 159

11.2 Metastone behavior analysis

All experiments conducted for the presented results in Sections 11.3 and 11.4, were

conducted on Metastone, a Hearthstone simulator. In Section 11.3 is presented the behavior

analysis of the HearthBot, deployed as a pure proximity ANN that simulates memory,

and Section 11.4 presents all proposed temporal based HearthBots, that uses a behavioral

and spectrum models for all proposed ANN, and the creative HearthBots, deployed with

the HARP. All HearthBots were evaluated in terms of win rate, total victories divided by

the total number of matches, as explained in Sections 11.3.1 and 11.4.1. For the temporal

HearthBots, it was analyzed also in terms of general behavior attribute curve, where the

average of each collected attribute was measured, as explained in Section 11.4.1. The

selected attributes for evaluating the general performance in Metastone were: Minions

played; fatigue damage; damage dealt; spells cast; weapons played; mana spent; weapons

equipped; cards played; armor gained; cards drawn; hero power used; turns taken; and

healing done. All extracted attributes were directly obtained from Metastone functions

and are used to evaluate the general behavior of the agents, thus they do not constitute

a quality measurement but rather a way to investigate in what attribute the agent is

spending most of its efforts.

In order to evaluate all HearthBots competing in the game, the decks described by

Table 2 were selected to play with. These decks are legendary ones selected from recent

top ranked players and they are as diverse as possible regarding their strategies in order to

explore the proposals capabilities in playing the game. These decks were grouped into three

types of strategy: Defensive, that focus in defending the hero and battlefield; Aggressive,

that focus in destroying the opponents minions and hero; and Hybrid, a mixed strategy

between defensive and aggressive.

Moreover, more nine decks were selected in order to serve as unobserved decks,

composed by data not used during training, that HearthBots play against in order to

evaluate their capability in generalizing for environments never seen before. Those decks

are also competitive ones, described in Table 3, and represent all nine heroes of the game

varying strategies between hybrid, aggressive and defensive.

Metastone posses two major agents; one is based on the MCTS; and the second one

is based on a board control greedy strategy and it is called Board Control Greedy (BC-

Greedy). The MCTS based Metastone agent plays by selecting actions with a randomized

160 Chapter 11. Results

Table 2 – Deck selection for HearthBots evaluation.
Hero Deck name Strategy
Warrior Control Warrior Defensive
Warlock Zoolock Aggressive
Druid Midrange Druid Hybrid
Priest Control Priest Defensive
Rogue Malygos Rogue Aggressive
Mage Tempo Mage Hybrid
Shaman Aggro Shaman Aggressive
Hunter Face Hunter Aggressive
Paladin Secret Paladin Defensive

Source: By the Author.

Table 3 – Deck choices and the respective strategies that serves as unobserved
data

Hero Deck name Strategy
Warrior Tempo Warrior Hybrid
Warlock Handlock Aggressive
Druid Egg Druid Defensive
Priest Dragon Priest Hybrid
Rogue Oil Rogue Hybrid
Mage Concede Mage Hybrid
Shaman BloodLust Shaman Aggressive
Hunter Midrange Hunter Hybrid
Paladin Aggro Paladin Aggressive

Source: By the Author.

visibility window from a decision tree, while the BC-Greedy plays by selecting the best

action that it can perform at the present considering two States, from a Time Flow, the

present and one into the future. Both agents, from Metastone, were evaluated playing

against the MCTS and BC-Greedy for each selected hero. To select an adequate quantity

of simulations per deck to be performed during the experiments, a coefficient of variation,

depicted in Chart 4, of the win rate performance was obtained from a sensitivity analysis

of MCTS playing with the deck called Control Warrior against another MCTS playing

with the same deck. The sensitivity was measured as an average of 100 executions for each

number of simulations equals to 10, 50, 100, 500 and 1000 with a total of 166000 simulations.

The total amount of simulation per deck was limited to 1000 since the experiment has an

unfeasible computational complexity.

As showed in Chart 4, the coefficient of variation for each number of simulations

11.2. Metastone behavior analysis 161

Chart 4: Winrate coefficient of variation for Metastone.

Source: By the Author.

ranges from 0.35 when running 10 simulations to a near stable 0.05 when running 1000

simulations. Despite a reliable range equal to [0.15,0.1] for 50 to 100 simulations, was

preferred the usage of 1000 simulations per experiment to obtain a more precise win

rate response from Metastone. It is important to note that this coefficient of variation

is valid for the Warrior deck playing against itself with the MCTS heuristic. Alongside

with the win rate analysis, some experiments for T-HearthBot also shows the summarized

behavior of the agents over the selected number of simulations. As depicted in Chart 5,

the coefficient of variation from 1000 simulations based on the calculated one for the win

rate for each extracted attribute statistics, described by the X-Axis, is ranging from 0 to

0.4. Considering the observed coefficient, the total number of simulations for the behavior

attributes was maintained into 1000 as accomplished for the win rate analysis.

It is important to note that both coefficients, win rate and behavior attribute,

were extracted for the warrior versus warrior MCTS match, thus its is assumed that

the statistical fluctuations for all other matches from Metastone will behave accordingly.

However, a variation between experiments is expected and should be considered into any

taken conclusion.

11.2.1 Metastone agents playing against MCTS

The behavior of the MCTS heuristic, as illustrated in Chart 6, shows the average

win rate for each selected hero. Each bar on the X-axis is the mean of the win rate obtained

162 Chapter 11. Results

Chart 5: Attribute behavior coefficient of variation for Metastone.

Source: By the Author.

for the indicated hero versus all nine heroes from Table 2. Assuming that the coefficient

of variation of the selected number of simulations is low, this graph measures the raw

average performance for both selected Metastone main agents, playing against the MCTS

heuristic.

As depicted in Chart 6, the MCTS displayed a minimum average near 20% for

the Shaman deck against a maximum of 80% for the Paladin. It seems that it can not

play well with the Rogue, Shaman, Mage and Priest decks since all of them consists in

complex strategies. When playing against itself, MCTS vs MCTS, the expected behavior

was that the win rates should be close to 50%, but it did not happen, because some decks

strategy has advantages over others as argued in Section 11.2.3. For all the decks there are

clear advantages from each one against the others. For example, the Secret Paladin deck

appears to be more efficient against all the other decks with its average raw win rate being

higher than everyone else. Differently from the MCTS, the BC-Greedy playing against the

MCTS displayed an average win rate for all heroes above 75%. The minimum observed

win rate for the BC-Greedy was 77% for the Rogue deck, while the maximum observed

was near 93% for the Priest deck. This result show that the BC-Greedy is able to perform

better, in terms of general average win rate than the MCTS for the selected decks during

Metastone simulations.

11.2. Metastone behavior analysis 163

Chart 6: Selected decks against Metastone Monte Carlo Tree Search.

Source: By the Author.

11.2.2 Metastone agents playing against Board Control Greedy

The win rate behavior of the BC-Greedy is showed in Chart 7 and it represents the

average win rate, of each selected hero playing against Metastone BC-Greedy, for each

selected hero. The bars on the X-axis, from Chart 7, have the same meaning as explained

for Chart 6.

As depicted in Chart 7, when playing against the BC-Greedy the average win rate

of each deck for each bot has decreased. If analyzing the MCTS, it can be seen that its

average win rate for each hero is bellow 45% and in some cases it can be seem bellow 10%.

Since the analyzed behavior of the BC-Greedy, playing against the MCTS was better

than the MCTS, the presented averages in Chart 7 were expected. On the other hand, the

BC-Greedy playing against itself, for each hero, displayed an average win rate performance

that ranges from 30% to 75%. Conclusively, for the behavior deployed by Metastone, the

BC-Greedy is a better heuristic than the MCTS for the analyzed matches.

11.2.3 Deck win rate signature and discussion

A deck advantage is clearly apparent when evaluating their raw behavior through

MCTS, where each deck has its own win rate curve when comparing with all others. For

example, in Chart 6 and 7, the average win rate for the Paladin deck is higher than

everyone. This behavior is recurrent for each hero, where each one has its own average

win rate signature and it occurs because each deck has a specific set of cards that enable

164 Chapter 11. Results

Chart 7: Selected decks against Metastone Board Control Greedy.

Source: By the Author.

players to perform actions that in general subdue part of an enemy’s moves. For instance,

the Paladin deck is composed by many secrets (i.e. special kind of spells) thus it is possible

that those secrets are being used to subdue a partial amount of enemy’s moves. It is

important to note that for all heroes, its win rate signature is untied to HearthBot capacity

in subduing moves, but rather on the essence of a deck since a MCTS approach shows the

same behavior. All win rate signatures represent how god or bad in average is that deck,

thus if considered in a real Hearthstone match it can help players to decide what decks

they should use in order to maximize their average win rate.

11.3 HearthBot evaluation

All experiments with HearthBot were conducted in a CentOS linux installed in

a dual Intel Xeon E5-2620 with the total amount of 24 threads and 64 GB of memory.

The proposed ANN was implemented in CUDA/C++ and executed in a Tesla K20 that

has 2496 cores and 5 GB of memory. The Graphics Processing Unit memory limits the

maximum number of neurons, that the ANN can handle, to 4 million. Moreover, all the

feature fields were limited to a maximum of 20 variables to avoid communication bottleneck

when executing the learning or prediction processes. The Metastone simulator used was in

the version 1.2.0 and it was obtained from (DEMILICH, 2016). It encompasses the last

season updates to this date from Hearthstone. All the simulator routines were implemented

with Java by (DEMILICH, 2016), due to this fact the proposed ANN was programmed

11.3. HearthBot evaluation 165

to communicate with Metastone through the Java Native Interface (JNI), thus avoiding

bottlenecks from interprocess communication.

11.3.1 Experimental design

In this research, HearthBot is compared with a MCTS agent available in the Meta-

stone simulator in order to evaluate is performance. The BC-Greedy was not used to

evaluate HearthBot since when playing against it, HearthBot’s average win rate perfor-

mance for each evaluated hero was very low. This behavior indicates that HearthBot,

deployed without temporal learning, may not be able to handle a heuristic like Metastone’s

BC-Greedy. HearthBot was evaluated in two sets of experiments:

a) On the first set of experiments, called training, for each deck, HearthBot trains a

new neural network playing against the nine decks with the MCTS agent and test it

against the same nine decks.

b) On the second set of experiments, called exploiting, HearthBot was trained with the

same decks, but instead it was tested with nine different unobserved decks described

by Table 3 from Section 11.2. This enables to verify if HearthBot’s associative memory

generalizes against new decks.

Moreover, the cognitive code growth and analysis was also made, in Section 11.3.6,

during the training experiment, to observe the internal behavior of the proposed ANN.

11.3.2 Simulations

During the learning experiment, HearthBot training was accomplished by playing

with each deck against MTCS for all the decks presented on Table 3. This training stage

was constituted 1800 simulations per deck and a total of 16200 simulations for the full

training. This experiment was performed for all the three configurations in Table 4, what

gives a total of 48600 simulations for each deck. When performing, in learning experiment,

HearthBot was evaluated through 1000 games against each trained deck resulting in a

total of 243000 simulations considering all the three configurations in Table 4.

The exploiting experiment was used to verify its performance against unknown

opponents. During this experiment, HearthBot uses all the trained decks to play against

every unobserved deck described by Table 3. The win rate performance was extracted as

166 Chapter 11. Results

in the training evaluation, with 1000 simulations each in a total of 81000 simulations. This

experiment was also performed using the configuration reso-90 for a high precision and

some degree of generalization.

The bot performance was evaluated through the win rate obtained from the

simulations for each experiment. The win rate of a deck was measured by calculating

the ratio of wins in relation to the total number of games evaluated. All the win rate

performance was finally evaluated with the geometric mean for all the experiments, thus

avoiding over-evaluation from different decks for each experiment.

11.3.3 Parameters choice

In the literature, a multi-channel ANN is typically used with a high resonance

criterion, above 80%, to provide some degree of specialization. For HearthBot, three

configurations were used, they are specified in Table 4. The configuration reso-80 has

80% resonance in order to obtain some degree of specialization, in contrast, configuration

reso-90 was created with a neuron matching above 90%, and finally, the configuration

reso-90+ was used for near precise matching with a vigilance criteria above 95%. The last

variable of each parameter set were equal to 0 for the reason that the reward field is shared

between cognitive codes from the same category, thus categorizing concisely. Finally, all

the learning rates were configured equally to the resonance of each configuration for fast

learning.

Table 4 – Parameters choices for each test from training and exploiting ex-
periments.

reso-80 reso-90 reso-90+
𝜌1 = 0.8
𝜌2 = 0.8
𝜌3 = 0.8
𝜌4 = 0.8
𝜌5 = 1.0
𝜌6 = 0.0

𝛾1 = 1
𝛾2 = 1
𝛾3 = 1
𝛾4 = 1
𝛾5 = 1
𝛾6 = 0

𝛽1 = 0.8
𝛽2 = 0.8
𝛽3 = 0.8
𝛽4 = 0.8
𝛽5 = 1.0
𝛽6 = 0.8

𝜌1 = 0.9
𝜌2 = 0.9
𝜌3 = 0.9
𝜌4 = 0.9
𝜌5 = 1.0
𝜌6 = 0.0

𝛾1 = 1
𝛾2 = 1
𝛾3 = 1
𝛾4 = 1
𝛾5 = 1
𝛾6 = 0

𝛽1 = 0.9
𝛽2 = 0.9
𝛽3 = 0.9
𝛽4 = 0.9
𝛽5 = 1.0
𝛽6 = 0.9

𝜌1 = 0.9
𝜌2 = 0.95
𝜌3 = 0.95
𝜌4 = 0.98
𝜌5 = 1.0
𝜌6 = 0.0

𝛾1 = 1
𝛾2 = 1
𝛾3 = 1
𝛾4 = 1
𝛾5 = 1
𝛾6 = 0

𝛽1 = 0.9
𝛽2 = 0.95
𝛽3 = 0.95
𝛽4 = 0.98
𝛽5 = 1.0
𝛽6 = 0.9

Source: By the Author.

11.3. HearthBot evaluation 167

11.3.4 Overall performance and discussion

HearthBot overall performance during the training experiment is illustrated in Chart

8. This graph represents the geometric tendency from the raw performance, and it was

obtained during the training experiment. As depicted in Chart 8, the MCTS wins against

the random approach with an average of 9% win rate difference. This result suggests that

the MCTS, as provided by Metastone, is not a good approach to play this game since its

performance is slightly better than a random one. Another explanation is that the solution

search space is so big that the MCTS could not find a reliable solution with its heuristic.

Chart 8: HearthBot win rate against all the decks of the experiments from
the training experiment.

Source: By the Author.

The results showed in Chart 8 also shows that HearthBot overcomes both, random

and the MCTS approaches for the configurations reso-90 and reso-90+. In contrast,

configuration reso-80 lacks the necessary precision to do good predictions, since its overall

performance is poorer compared to reso-90 and reso-90+. For instance, the deck used

with the Warlock has the worst win rate, near 1% and is below the random approach. This

behavior could be explained as a generalization in such a level that HearthBot could not

differentiate distinct deck cards from each other, thus resulting in learning moves that lead

to a negative reward. In contrast, the Warrior and the Hunter have a win rate tendency

near 80% for the configuration reso-80, what implies in all the moves receiving almost the

same reward due to the play style of the decks or due to a great similarity between all

168 Chapter 11. Results

cards on those decks. For the other decks, the configuration reso-80 performed equally or

slightly worse than the MCTS approach, which shows that the MCTS, in overall, could be

easily defeated by HearthBot.

HearthBot received a great improvement when using the configuration reso-90, as

depicted in Chart 8. This is probably because of its enhanced precision obtained by a

𝜌 > 0.9, leading to more precise matchings between context and cognitive codes. Also, the

configuration reso-90 uses more cognitive codes, to represent more distinct information

obtained from the environment. This representation enhancement can be seen directly into

the Warlock performance that is slightly higher than both, random and MCTS approaches.

For all the other heroes, the configuration reso-90 performs well and overcomes the MCTS

by an average of 31% of win rate difference. In comparison to other heroes, the Druid

performed the best and scored an average of 78% win rate.

In contrast to reso-80 and reso-90, configuration reso-90+ performed similarly to

reso-90, but with more cognitive codes and a more precise matching with its 𝜌 > 0.95 for

some fields. This impacts into the Warlock hero, that have almost the higher win rate

near 90%. This configuration performed also better for the Warrior, Priest, Mage, Shaman

and Hunter, thus being in overall the most efficient one in terms of win rate performance.

The Druid hero gets bellow from its counterpart in configuration reso-90, that could be

explained as outliers inside the geometric tendency since the coefficient of variation is

higher than 0. The major problem with this configuration is the training time that relies

on the number of neurons used.

11.3.5 Overall performance against unobserved decks

Overall, as illustrated in Chart 9, the geometric tendency was 21% greater in favor

to HearthBot compared to MCTS. The lowest win rate was from the Control Warrior, with

an average win rate performance near 73% and a maximum as 93% from Secret Paladin.

These results show the capability of the proposed ANN to generalize while maintaining the

integrity of the learned data. Besides the good results from heroes with a clear advantage

against others, HearthBot performed regularly. For instance, the Aggro Shaman win rate

performance was 48%, and this means that it loses more than wins against the unknown

opponents, nevertheless, this was the win rate performance below 50%.

HearthBot performed better than the MCTS, but it is clear that the difference

11.3. HearthBot evaluation 169

Chart 9: HearthBot win rate against unknown decks.

Source: By the Author.

of 21% in average was not higher than the difference obtained against trained decks.

Furthermore, the overall performance for all decks was proportional to the ones obtained

on the learning experiment, concluding that HearthBot seems better against the MCTS

for trained and unobserved decks.

11.3.6 Cognitive code analysis

The proposed ANN displays a neuron usage, calculated as the total number of

neurons used to codify all the training data, depicted in Chart 10, proportional to the

precision described by the three configurations reso-80, reso-90 and reso-90+. For instance

the lowest values of usage, bellow 0.5%, were from the Druid, Mage, Shaman, Hunter and

Paladin from reso-80.

The observed behavior happened due to the fact that decks have cards that are

considered similar by the ANN, what may achieve a better context generalization per

codified neuron. For the configuration reso-90, it is possible to see that the Warrior,

Warlock, Priest and Rogue obtained an usage above 1.5%, indicating not that the effects

have a higher resonance criteria, but also that for those heroes the Hearthstone contexts

were less generalized. The configuration reso-90+ was the most expensive, it used almost

5% of the total capacity. Despite 5% seems to be a low value, if the hardware used to

perform all the operations of the proposed ANN had a considerable lower memory capacity

it could be practically impossible to use it.

170 Chapter 11. Results

Chart 10: Neurons usage represented by the Y-axis as the total amount of the
ANN capacity.

Source: By the Author.

Neuron growth can be a problem if it happens too fast because it could easily get

beyond the ANN limits, for HearthBot it happens in a quasi linear manner as showed in

Chart 11. For the configuration reso-80, HearthBot uses lower quantities, bellow 20000,

this happens due to the lower resonance criteria. In contrast, the configuration reso-90 uses

lower values at the beginning and higher values above 20000 for the rest of the training

stage. It can also be observed that the behavior of the configuration reso-90 is almost

logarithmic at the beginning and starts to become linear after 50% of the execution time.

Chart 11: Neuron growth geometric tendency for each trained deck.

Source: By the Author.

11.3. HearthBot evaluation 171

The observed behavior, from Chart 11, could be explained as a behavior of Metastone

in relation to the randomness for each simulation, otherwise this growth would be almost

linear. Configuration reso-90+ has the largest growth rate, that exceeds 100000 neurons

when reaches 70% of the training stage. This growth behavior is explained also by the

resonance criteria for each configuration, which has a trade-off between more precision and

code size or more generalization and less precision in environment representation. These

results show that the proposed architecture could be used with a commercial Graphics

Processing Unit without memory limitations instead of ones manufactured for the scientific

domain as the Tesla K20.

172 Chapter 11. Results

11.4 T-HearthBots evaluation

The HearthBot evaluation was performed to verify its ability to play Hearthstone. By

contrast, the proposed T-HearthBot variants described in Section 11.4.1 were evaluated to

investigate how the proposed creative HearthBot, deployed with the HARP and UAM-ANN,

perform on Metastone using the proposed Hearthstone action coding models, behavioral

and spectrum. Differently from HearthBot, all T-HearthBots were also evaluated playing

against the BC-Greedy since it is expected that their behavior against it should be better

with the deployed Q-learning model. The experiments for all T-HearthBots variants were

conducted in Windows 10 Pro installed on a core I7-4700Q with the total amount of 4

threads and 4 physical cores with 8 GB of memory. All the proposed T-HearthBots were

implemented directly with Java and were executed on the Central Processing Unit, since

the temporal models as presented by (TAN et al., 2008) spend less neurons than a memory

based model. The Metastone simulator used was in the version 1.2.0, as for HearthBot,

and it was obtained from (DEMILICH, 2016).

11.4.1 Experimental design

Five T-HearthBot variants were evaluated in order to see how the HARP and UAM

behave under a simulated Hearthstone environment. The first bot is called T-HearthBot,

proposed in Chapter 10, that incorporates the Q-Learning FALCON architecture with the

proposed Hearthstone model. The second evaluated bot is called TR-HearthBot, where

it is the T-HearthBot deployed with the reactive model and a behavioral Hearthstone

action coding, that uses an action mask described in Section 6. On the other hand, the

creative T-HearthBot called CTH-HearthBot, was deployed with the proposed HARP. In

addition, the TU-HearthBot, a composition of the proposed UAM with T-HearthBot, was

also evaluated. Finally, the creative T-HearthBot, called CTUH-HearthBot, based on a

HARP and UAM-ANN, was evaluated. The evaluation of all T-HearthBot variants were

organized in 5 main experiments described as follows.

a) Winrate convergence: This experiment shows how good the convergence was for

the proposed T-HearthBots when playing against two Metastone heuristics, the

MCTS and the BC-Greedy. In this experiment, all T-HearthBots play against 2

selected decks and their behaviors are analyzed through observed epochs. The deck

11.4. T-HearthBots evaluation 173

selection, for this experiment, was based on the worst observed performance obtained

for HearthBot. The deck selection process is described in detail in this section and

further complemented in Appendix A. This experiment is presented by Sections

11.4.4 and 11.4.4.

b) Search space exploration: The cognitive code growth of the creative system was

evaluated for the Shaman CTH-HearthBot versus the MCTS Paladin in a controlled

environment. The evaluation permits to see how the creative Hearthbot can better

explore the search space when seeking for new actions to perform. All analysis from

this experiment are presented in Section 11.4.6

c) General win rate: This experiment is responsible to evaluate the average win rate

of CTUH-HearthBot, one of the best evaluated proposals for T-HearthBots in terms

of cognitive code growth and obtained performance, for each playable hero against

every one in Table 2. This experiment performs a similar evaluation as performed

for HearthBot in Section 11.3.4 and it is presented in Section 11.4.7.

d) Overall performance against unobserved decks: This experiment is responsible

to evaluate the average win rate of CTUH-HearthBot, but instead it is tested with nine

different unobserved decks described in Table 3 from Section 11.2. This experiment

performs a similar evaluation as performed for HearthBot in Section 11.3.5 and it is

presented in Section 11.4.8.

e) Cognitive code: As conducted for HearthBot, a cognitive code growth is also

presented at the last section for T-HearthBots evaluation, in order to investigate

how the FALCON behave. The evaluation aims to investigate how much storage

space is expended by T-HearthBots, when deployed as an ARAM and the proposed

UAM-ANN.

Differently from HearthBot, all T-HearthBots win rate evaluations were also accom-

plished by observing their convergence during epochs in order to observe the temporal

learning behavior over time. All T-HearthBots were evaluated playing against MCTS

agents and since they were assembled based on temporal learning techniques, then it is

expected that they behave in a better way than HearthBot. Based on that assumption, all

T-HearthBots were also evaluated playing against the Board Control Greedy heuristic from

Metastone. That stems from the fact that, the Board Control Greedy bot shows a better

174 Chapter 11. Results

performance than the MCTS as presented in Section 11.2. Moreover, to evaluate their

convergence, individually, 2 heroes were selected, Hunter and Warrior, from HearthBot’s

exploring experiment table, where the Hunter played against eh MCTS and the Warrior

played against the BC-Greedy. The selected heroes represent two of the worst cases, lowest

HearthBot performance in terms of win rate, observed during HearthBot’s performance.

In order to select which enemy for each selected deck, the Hunter and Warrior were

evaluated playing against everyone from Table 3. Through all analyzed data obtained from

the individual win rate performance of the Hunter deck, where the enemy was the MCTS

heuristic, could be observed that Metastone’s bots display the worst performance when

playing against the Paladin deck. Furthermore, when playing against a BC-Greedy heuristic,

the Warrior deck displayed the worst performance against the Shaman. Conclusively, the

selective enemies, to conduct the win rate convergence experiment, were the Paladin and

Shaman deck. The behavior of the Hunter deck is presented in details on Appendix A. In

addition, complementary behavior analysis for other decks that performed worst during

HearthStone evaluation is also presented in Appendix A.

11.4.2 Simulations

According to the Metastone behavior described in Section 11.2, a total amount of

1000 simulations is necessary in order to reduce the coefficient of variation of the observed

winrates, to a value near 0, that satisfactorily reduces statistical fluctuations displayed by

the simulator. Considering that assumption about the coefficient of variation, the number

of simulations for each main experiment described in Section 11.4.1 is given as follows:

a) The winrate convergence experiment, as described in Section 11.4.1, was conducted

to measure the win rate convergence in a determined number of epochs. To permit

collecting a reasonable amount of epochs, 5000 simulations are performed for each

win rate convergence test. For the total amount of simulations defined, 200 epochs

were measured per experiment, where each epoch is composed by 25 simulations.

b) Data from the search space exploration experiment, was collected during 5000

simulations obtained in 200 epochs. Each epoch was composed by 25 simulations as

accomplished for experiment winrate convergence experiment.

c) For the general win rate experiment, 9000 simulations were conducted in order

11.4. T-HearthBots evaluation 175

to collect the general average for each hero. To enable all evaluated bots to learn

strategies properly, 100 simulations are performed earlier until reaching a epsilon

equal 0 for each match. The average for one hero is collected during 1000 remaining

simulations giving the total of 9000 per hero and HearthBot.

d) For the overall performance against unobserved deck experiment, each deck was

trained with 200 simulations playing against everyone from Table 2. In order to

verify its performance against unobserved data, 1000 simulations were performance

when playing against each deck from Table 3, thus giving a total of 1800 simulations

for training and 9000 simulations for evaluation. For instance, this is the same

experiment as conducted for HearthBot.

e) In the cognitive code experiment, the cognitive code growth was measure through

12500 simulations in order to capture its behavior in a larger observation window. It

was also divided into 500 epochs, where each epoch is composed by 25 simulations.

11.4.3 Parameters choice

All evaluated T-HearthBots are based on a reactive or Q-Learning techniques as

described in Section 6, thus all their dynamics are guided by the parameters described in

Table 5. The erosion rate parameter, configured as 0.2, is responsible to determine a slow

erosion rate for the TR-HearthBot. The reinforcement rate was configured as 0.5 for a

midrange reinforcement rate when performing with the TR-HearthBot. Furthermore, the

decay rate was configured as 0.0005 for a slow decay rate, thus the TR-HearthBot retains

learned information longer. The pruning threshold for the TR-HearthBot was configured

to 100 neurons, thus it will throw away irrelevant information earlier during the learning

process and performing process. For all T-HearthBots, the epsilon decay, configured as

0.005, seeks for a fast exploration to exploit often. The initial epsilon starts at 0.5, thus

reinforcing the ability to exploit often, since it is a low value for a decay equals to 0.005.

When using the Q-Learning, the discount parameter was configured as 0.1 and the learning

rate as 0.5 for a midrange learning speed.

The T-HearthBots parameters were configured as shown by Table 6, where the

env field 1 and env field 2 are representing the proposed environment coding for all

T-HearthBots presented in Chapter 10. To achieve fast learning, all learning rates, for

all fields, were configured as 1. For the T-HearthBot and CTH-HearthBot, the learning

176 Chapter 11. Results

Table 5 – General parameters for all T-HearthBot variants

General parameter Value
Erosion rate 0.2
Reinforcement rate 0.5
Decay rate 0.0005
Prunning threshold 100
Vigilance reinforcement rate 0.001
Epsilon decay 0.005
Initial Epsilon 0.5
QDiscount 0.1
QLearning rate 0.5

Source: By the Author.

vigilances on the environment fields 1 and 2 were configured as 0.8 to achieve some degree

of generalization. For the HARP system, the Expectation ART, in CTH-HearthBot and

CTUH-HearthBot, it uses the same learning vigilances to categorize environments in fields

1 and 2. Differently, the learning vigilance for the TU-HearthBot and CTUH-HearthBot

in channel 1 is configured as 1, since the expected number of possible actions is lower

than the total expected amount of environments. However in channel 2, both uses the

learning vigilances, for field 1 and 2. The gammas and alphas variables are configured as 1

or 0.1, for each respective attribute represented by its column. Furthermore, the adaptive

vigilance method is used by all networks that codes environment fields 1 and 2. The fuzzy

readout parameter is never used, because it can cause false predictions. Finally, the direct

reward is always used inside all Q-Learning variants of the T-HearthBots.

Table 6 – Field parameters for all T-HearthBots, HARP and UAM proposals

General parameter Env field1 Env field2 Action field Reward
learning rate 1 1 1 1

learning vigilances 0.8 0.8 1 0
gammas 1 1 1 0
alphas 0.1 0.1 0.1 0.1

adaptive vigilances true true false false
resonance to predict false false false false

fuzzy readout false false false false
use direct reward true

Source: By the Author.

Neuron composite activation function selects which operation will be used to perform

the neuron activation and resonance checking procedures. In this research, T-HearthBot

11.4. T-HearthBots evaluation 177

uses the ART I operation for all its fields to represent the original ARAM FALCON

architecture proposed by (TAN, 2004). TU-HearthBot and CTUH-HearthBot use ART I

operations for the env field 1 and env field 2, from channel Y, to generalize an environment,

ART II for learning and prediction in channel 1, that represent actions and the proximity

activation in resonance checking for action learning. This configuration enables to learn

and generalize environments and precisely categorize binary patterns when performing

action learning and prediction. The CTH-HearthBot uses a similar configuration, as TU-

HearthBot and CTUH-HearthBot, for its fields as showed in Table 7. With respect to all

HARP based networks, ART I operations are used inside their env 1 and env 2 fields for

environment generalization during Bayesian surprise vector categorization.

Table 7 – Neuron activation parameters for all T-HearthBots

Bot ART I ART II Proximity
T-HearthBot All fields - -

TR-HearthBot All fields - -

TU-HearthBot Env1 and Env2
in channel Y

Learning in action
channel 1 and prediction

in channel Y

Resonance in
action channel 1

CTH-HearthBot Env1 and Env2 Learning in action
field and prediction

Resonance
in action field

CTUH-HearthBot Env1 and Env2
in channel Y

Learning in action
channel 1 and prediction

in channel Y

Resonance
in action channel 1

Source: By the Author.

11.4.4 Behavioral T-HearthBots winrate

The win rate convergence for all T-HearthBots, assembled using a behavioral action

model, was evaluated for all the selected heroes described in Section 11.4.1. The selected

Hunter deck relies in a face strategy, where the best moves for this deck are related in

dealing direct damage to the enemy hero. On the win rate convergence analysis for this

deck, depicted in Chart 12, the TU-HearthBot and CTUH-HearthBot received an average

win rate near 80%, by contrast, the T-HearthBot, CTH-HearthBot and TR-HearthBot

received an average win rate performance near 70%. Moreover, the observed performance

for the MCTS was near 15% and for the BC-Greedy was near 53%.

The behavior of the Hunter deck playing against the MCTS Paladin, as illustrated

178 Chapter 11. Results

Chart 12: Winrate convergence for Face Hunter versus Metastone MCTS play-
ing with Secret Paladin.

Source: By the Author.

in Chart 13, shows that the MCTS tends to spend more mana by playing more minions

and spells. The lowest behavior of the MCTS can be explained as the lack of ability of the

bot in deciding efficiently how to expend those resources. Furthermore, as already observed

from the previously presented behaviors, the damage dealt does not correlate directly

with the win rate performance, since both, T-HearthBot variants and the BC-Greedy, had

displayed a low damage dealt, besides that, all T-HearthBots displayed better performance

than the BC-Greedy. In addition, it seems that wisely deciding how to spend mana can

also influence how good the bot will behave. If analyzing the amount of minions played,

can be noted that the MCTS had played the most and for all other bots the quantity

of played minions stayed similar. The best performance bot, obtained for the creative

CTUH-HearthBot, with the fastest convergence for the Hunter experiment, had displayed

a higher spell usage with a low damage dealt, same mana spent as other HearthBots

and played the least amount of cards. This behavior could indicate that the converged

simulated POMDP, obtained through the UAM with 100% resonance in channel 1 for the

Hunter deck, tends to use more spells to dominate the battlefield in order to exploit better

its face capabilities.

The win rate convergence for the Warrior versus BC-Greedy Shaman is depicted in

Chart 14. For this experiment, all T-HearthBot variant, excluding T-HearthBot, received

an average win rate performance near 60% after their convergence. It is important to note

that in this experiment, the convergence of T-HearthBot and CTH-HearthBot follow a

11.4. T-HearthBots evaluation 179

Chart 13: Behavior statistics for Face Hunter versus Metastone MCTS playing
with Secret Paladin.

Source: By the Author.

negative slope. This behavior can be explained as the lack of ability from those bots in

learn Q-values correctly, since both possess the highest number of neurons, because they

are not exploiting a tree structure as the TU-HearthBot and CTUH-HearthBot. For this

experiment, the TR-HearthBot received a win rate performance, equal to 1%, that is bellow

the MCTS. Since the defensive Warrior deck relies mostly in building up the battlefield in

order to avoid damage, it seems the TR-HearthBot was not able to optimize the virtual

POMDP considering the future, thus it had not exploited well the deck strategy. The

MCTS received a win rate performance near 5% and the BC-Greedy received a win rate

performance near 10%. Since both are handcrafted methods, this behavior was expected

when playing against the BC-Greedy heuristic from Metastone.

The behavior of the TR-HearthBot, as showed in Chart 15, received the lowest

counting for all observed attributes on the X-Axis. This reflects, explicitly, on its win

rate performance when playing the game, as depicted in Chart 14. For all other bots,

the counted behavior attributes follow the same pattern, where all T-HearthBots were

observed with the same counting and the MCTS and BC-Greedy with relative lower ones.

In addition, the Warrior deck strategy, that relies mostly in defending the battlefield

and hero with armor skills and defensive minions, reflects directly on the observed armor

gained, and minions played that received relatively higher counting if compared to the

other decks. It was also observed that this deck permits players in complementing their

battlefield by using weapons, thus a counting for weapon usage is also present on its

180 Chapter 11. Results

Chart 14: Winrate convergence for Control Warrior versus Metastone BC-
Greedy playing with Aggro Shaman.

Source: By the Author.

behavior counting illustrated in Chart 15.

Chart 15: Behavior statistics for Control Warrior versus Metastone BC-
Greedy playing with Aggro Shaman.

Source: By the Author.

11.4.5 Spectrum T-HearthBots winrate

When analyzing the win rate convergence of the Hunter versus MCTS Paladin,

depicted in Chart 16, it can be noted that the creative bots obtained the best performance

again, where the CTH-HearthBot and CTUH-HearthBot obtained an average win rate

11.4. T-HearthBots evaluation 181

performance of 80%. The TR-HearthBot and T-HearthBot obtained an average win rate

performance of 68%. Furthermore, all T-HearthBot variants received a higher win rate

than all analyzed Metastone agents. For instance, the BC-Greedy received an average

win rate of 56% and the MCTS received an average win rate of 17%, which indicates a

performance gain higher than 50%, if comparing all T-HearthBots with the MCTS, and a

performance gain higher than 20%, if comparing with the BC-Greedy.

Chart 16: Winrate convergence for Face Hunter versus Metastone MCTS play-
ing with Secret Paladin.

Source: By the Author.

The Hunter deck displays a behavior similar to the one observed for the Mage

deck, as showed in Chart 17. All the creative HearthBots, CTH-HearthBot and CTUH-

HearthBot, displayed a lower attribute counting for the damage dealt, cards played and

cards drawn. Those counted attributes represent the ones responsible in guiding the deck’s

strategy, where managing those will possibly increase an agent’s performance. As also

depicted in Chart 17, the attribute that exhibits the highest counting was the damage

dealt, for the BC-Greedy. It could indicate that the BC-Greedy heuristic, as discussed on

the previous presented behavior analysis, tries to give the highest amount of damage as

possible without caring about how much mana it spent.

The win rate convergence for the Warrior versus BC-Greedy Shaman, illustrated in

Chart 18, shows that all creative HearthBots displayed an average performance of 50%.

In addition, the TU-HearthBot achieve a similar average performance, of 44%, than its

creative counterparts. Furthermore, it seems that the TU-HearthBot scored a lower average

182 Chapter 11. Results

Chart 17: Behavior statistics for Face Hunter versus Metastone BC-Greedy
playing with Secret Paladin.

Source: By the Author.

win rate since it did not explore well during the exploration phase before converging. On

the other hand, the T-HearthBot achieved an average win rate of 30%, what leads to an

average win rate gain, for the creative HearthBots, of 20%. When analyzing the MCTS

and BC-Greedy, it can be seen that their performance where considerable worst than all

the proposed T-HearthBots, where the MCTS achieved an average win rate of 3% and

the BC-Greedy achieved an average of 9%. Since the main strategy of the Warrior is on

defending its hero through defensive minions and spells, it was expected to observe that

performance for all the handcrafted bots from Metastone that can not deal well with

temporal information.

As depicted in Chart 19, the Warrior versus BC-Greedy Shaman displayed a

behavior similar to the one observed for the Rogue versus BC-Greedy Shaman. However,

the presented behavior in Chart 19 does not show discrepancies that can be interpreted as a

sign of good or bad performance. All attributes were quite similar for all T-HearthBot, but

it can be seen that the T-HearthBot has spent less mana and it also played fewer minions.

This behavior can explain its poor performance in comparison to other T-HearthBots

although all other T-HearthBots played nearly identically. The MCTS and BC-Greedy

displayed in this experiment the lowest performance, as showed in Chart 19 and this

behavior seems to happen recurrently.

The win rate convergence tests, from Sections 11.4.4 and 11.4.5, describe the

behavior of T-HearthBots during its performance. All T-HearthBots obtained a similar

11.4. T-HearthBots evaluation 183

Chart 18: Winrate convergence for Control Warrior versus Metastone BC-
Greedy playing with Aggro Shaman.

Source: By the Author.

Chart 19: Behavior statistics for Control Warrior versus Metastone BC-
Greedy playing with Aggro Shaman.

Source: By the Author.

184 Chapter 11. Results

performance, even considering that the observed win rate for the creative HearthBots were

higher for the presented matches. Moreover, all T-HearthBots performed better than the

handcrafted approaches, MCTS and BC-Greedy, demonstrating the temporal technique

can win even against the BC-Greedy in terms of average performance. It is important

to note that the conducted experiments were based on two matches, the Hunter versus

Paladin and Warrior versus Shaman, thus they do not represent well the behavior of the

agent when playing with other types of decks. Nevertheless, in order to complement the

conducted experiments with a more diverse analysis it was repeated with 6 of the worst

performance decks obtained from the HearthBot performance analysis. The aforementioned

research is presented at Appendix A.

11.4. T-HearthBots evaluation 185

11.4.6 HARP search space exploration

In order to analyze if the creative HARP system is able to better explore an

environment search space, an experiment was conducted in a controlled environment on

Metastone, for the Shaman vs MCTS Paladin match, and it is described as follows. This

experiment measures how many actions are explored and learned by an HARP system,

CTH-HearthBot and an ART system, T-HearthBot. By measuring the learned actions it

will be possible to know how often the system is exploring new ones. However, in order to

do that without randomness interference, the resonance for the action and environment

fields was configured as 100% and for the reward field to 0%, thus ensuring that the HARP

will learn new environments. In addition, to exclude any possibility of generating a visible

cognitive code growth through the performing mode, after 𝜖 reaching 0, the 𝜖 decay for

this experiment was configured as 0. With this configuration, and a learning rate equal

to 1, the HARP system will learn all states without sharing neurons and without being

influenced by randomness provided by the performing mode.

As depicted in Chart 20, the behavioral ART system displayed a raw cognitive code

growth in a quasi linear slope leading to a maximum near 500 neurons. On the other hand,

the Harp displayed a logarithmic growth leading to a maximum near 1500 neurons. These

results, as aforementioned, represent the raw cognitive code growth without randomness

interference, thus it shows how often the ART system and the HARP system are exploring

new actions. The behavior of the HARP system displayed a maximum difference near 50%,

if comparing to the ART system, for a maximum of 2000 neurons. Conclusively, for the

studied match, the HARP system can in fact explore more actions during its exploration

phase.

For the spectrum model, as illustrated in Chart 21, the Shaman versus MCTS

Paladin displayed a logarithmic growth as the behavioral model. However, the slope of the

aforementioned growth was higher for the spectrum model, and it explores more actions

than the behavioral one. The ART based system, T-HearthBot, displayed a maximum

neuron count of 1450, while the maximum observed neuron count for the HARP system was

2000. There was observed a growth difference of 27% between both systems, considering

a maximum of 2000 neurons. This behavior was expected, since the controlled testing

environment enables to measure the raw growth without external disturbances.

The obtained results indicate that there are, in fact, evidence that the behavior of

186 Chapter 11. Results

Chart 20: Shaman vs Paladin cognitive code growth divergence, between a
behavioral HARP and an ART system, when exploring the search space.

Source: By the Author.

Chart 21: Shaman vs Paladin cognitive code growth divergence, between a
spectrum HARP and an ART system, when exploring the search space.

Source: By the Author.

11.4. T-HearthBots evaluation 187

the HARP system can improve the ability of an agent that will permit it in better explore

its search space on the simulated POMDP, which is a sign of novelty, from the creative

system, acting as a tool that helps to reach novel States. However, this can be assumed

for the Hearthstone environment used to conduct the aforementioned experiments, since

no other investigation was conducted.

11.4.7 General win rate analysis for CTUH-HearthBot

The general performance for the temporal creative HearthBot was evaluated with

CTUH-HearthBot, because it scored higher as shown by the win rate convergence tests

presented in Sections 11.4.4, 11.4.5 and in Appendix A, that represents the proposed

HARP and UAM and incorporates the temporal Q-Learning FALCON model described in

this research. The conducted experiment, in order to verify CTUH-HearthBot behavior,

was the same as the one conducted for the training experiment to evaluate HearthBot,

where each hero, from Table 2, plays against all others from the same table. Each win

rate average was obtained after performing 9000 matches, where each 1000 represents an

epoch against one enemy. The CTUH-HeartBot was tested in its two forms, behavioral and

spectrum in order to evaluate the general average performance of a model that learns with

preconceived behaviors and one that learns from scratch, where both bots were evaluated

against the MCTS and BC-Greedy.

As depicted in Chart 22, the CTUH-HearthBot that used the behavioral model

displayed an average performance above 90% for all decks, excluding the Zoolock that

received an average near 76%. On the other hand, the spectrum model received an average

win rate for all decks above 80%. In special, the Mage, Hunter, Warrior and Paladin scored

above 90%.

The displayed behavior for both, behavioral and spectrum showed in Chart 22, were

higher than the ones observed for HearthBot. Furthermore, CTUH-HearthBot combines

the proximity method on its categorization mechanism in its action channel 1, to better

categorization, with the HARP system search space exploration behavior, to better explore

the search space, thus it was expected that it went better on this test. Considering the

displayed behavior of those systems on the analyzed matches in this chapter, was also

expected lower performance of the MCTS against CTUH-HearthBot, since it did not

performed well for all analyzed matches.

188 Chapter 11. Results

Chart 22: Win rate for CTUH-HearthBot playing with all heroes against the
Monte Carlo Tree Search.

Source: By the Author.

On the other hand, as depicted in Chart 23, the behavioral CTUH-HearthBot

average win rate playing against the BC-Greedy was bellow 60% for the Shaman, Mange,

Hunter, Paladin and Priest, for all other decks its average win rate was observed above

50% excluding for the Zoolock that obtained an average near 55%. The spectrum model

scored above 60% for the same decks, where it obtained 10% more win rate in average

for the Zoolock. In contrast, it performed almost 20% worst than the behavioral for the

Rogue, Druid and Priest decks. Despite learning from zero, it was not enabled to overcome

the behavioral for each match. That stems from the fact that the spectrum model relies

in more simulations for learning than the behavioral one, since it learns from scratch.

Furthermore, it may be difficult for it to learn complex strategies considering the large

amount of states and paths for Hearthstone.

It is important to note that HearthBot, as presented in Section 11.2, obtained

an average win rate bellow 1% for all decks, thus it is not suitable to play against the

BC-Greedy. When playing against the MCTS the average performance was higher than

the ones obtained for the MCTS and slightly higher than the ones obtained for the

BC-Greedy. Nevertheless, it seems that CTUH-HearthBot displayed an average win rate

convergence similar or better to the one obtained for the BC-Greedy, when playing against

the BC-Greedy, and a better average performance if compared with MCTS. There is much

to enhance on the proposed CTUH-HearthBot and its variants, which respect on how they

handle a reasoning process. However, it was able to play against two Metastone agents

11.4. T-HearthBots evaluation 189

Chart 23: Win rate for CTUH-HearthBot playing with all heroes against the
BC-Greedy.

Source: By the Author.

and displayed an average win rate performance above 60%, against the BC-Greedy, and

90%, against the Metastone MCTS, where a substantial win rate gain was observed if

compared to HearthBot, MCTS and BC-Greedy versus MCTS cases.

11.4.8 Overall performance against unobserved decks

As illustrated in Chart 24, each bar on the X-Axis is the average win rate, obtained

through the selected simulation quantity described in Section 11.4.2, for a hero versus all

others. When playing against unobserved decks, CTUH-HearthBot displayed an average

performance bellow 80%. The Zoolock deck for the behavioral CTUH-HearthBot, when

playing against the unobserved ones, received the lowest average win rate of 82%. By

contrast, the Paladin deck received 99% for the behavioral and spectrum models. When

analyzing the performance of the behavioral model it can be concluded it is able to enhance

an agent’s performance over time, but the fact that it relies on handcrafted behaviors

need to be taken into consideration, thus its performance is bounded to the quality of the

deployed behaviors. However, when analyzing the spectrum model it can be concluded

the CTUH-HearthBot is able to generate strategies to play against the MCTS. Finally,

the fact that the performance of the MCTS, when performing in Hearthstone, is poor

if comparing it to board control strategies, as the one used by BC-Greedy, need to be

taken into consideration. Nevertheless, the average performance of CTUH-HearthBot for

unobserved decks was better than the one observed for HearthBot that in its worst case

190 Chapter 11. Results

received an average win rate above 40%.

Chart 24: CTUH-HearthBot versus MCTS win rate when performing against
unknown decks.

Source: By the Author.

The results depicted in Chart 25, represent the same kind of average as the one

presented for Chart 24, however, it represents the average when playing against the

BC-Greedy with unobserved decks. The performance of CTUH-HearthBot for all bots

was above 38%, where for the worst case it was 38% and for the best case it was 92%. In

special, the Shaman, Mage, Zoolock, Hunter, Paladin and Priest went above 60% average

win rate while the Rogue, Druid and Warrior went bellow it. The Behavioral model went

better when performing with the Rogue, Shaman, Mange, Druid, Warrior and Priest decks.

It can be noted that when playing with the Zoolock deck, the spectrum model obtained

a 21% better win rate performance than the behavioral. This behavior can be explained

as the ability for the spectrum to learn specific strategies, that the behavioral can not

encompass, since it was conceived with handcrafted behaviors.

When playing against the MCTS unknown enemies, CTUH-HearthBot performed

better than HearthBot. However, the results against the BC-Greedy were oscillating

according to the deck strategy. Nevertheless, HearthBot is unable to play against the

BC-Greedy, thus there were a substantial gain for it temporal counterparts, since either

Metastone handcrafted agents can not went well when playing against it.

11.4. T-HearthBots evaluation 191

Chart 25: CTUH-HearthBot versus Board Control Greedy win rate tendency
when performing against unknown decks.

Source: By the Author.

11.4.9 Cognitive code analysis

In order to verify if the UAM-ANN permits the HARP to spend less storage

space when performing, the cognitive code growth for CTUH-HearthBot was measured.

The conducted experiment was realized for the spectrum model and compared to the

T-HearthBot since it represents the FALCON architecture deployed with an ARAM. The

verified match was the Hunter versus MCTS Paladin that was selected a priori. The growth

behavior for the CTUH-HearthBot was obtained from action channel 1 and in average for

environment channel Y.

As showed in Chart 26, T-HearthBot displayed the highest growth than CTUH-

HearthBot. The T-HearthBot obtained a maximum observed amount of 4000 cognitive

codes, while CTUH-HearthBot obtained a maximum count near 1000 cognitive codes for

its action channel 1. The CTUH-HearthBot displayed an average cognitive code count of 2

for its environment channel Y, what indicates that it is sharing information between fields

from channel 1 and 𝑌 in order to represent fully the HearthStone context.

The growth behavior of the CTUH-HearthBot, representing the UAM-ANN, was

the lowest observed one for the collected data. These result show that the T-HearthBot,

deployed with the proposed UAM-ANN, can obtain the same of better win rate performance

results than the T-HearthBot, based purely on the FALCON and ARAM models, and

it also spend less space. Considering that the creative CTUH-HearthBot, deployed with

192 Chapter 11. Results

Chart 26: Hunter vs Paladin cognitive code growth divergence.

Source: By the Author.

the HARP, explores better HearthStone’s search space and consequently demanding more

storage space, as discussed in Section 11.4.6, the proposed UAM is able to represent that

extra demand more efficiently. Finally, as a consequence of its representativeness with a

compact structure, it is expected that the CTUH-HearthBot performs faster, as presented

in Appendix B, in terms of execution time than the T-HearthBot.

193

12 CONCLUSIONS

This chapter is divided into three sections, where a discussion over the proposals

drawbacks and advantages are provided, described as follows.

a) In Section 12.1, an overview of the conducted research is provided, where it presents

the main contributions of the conducted research in a summarized way.

b) In Section 12.2, general discussions over all the proposed HearthBots are presented

in this section.

c) Finally, in Section 12.3 general applications are suggested. In addition it is also

discussed how the system could be integrated with computer vision and deep learning

approaches.

12.1 Overview

In this thesis is proposed a computational model of The Honing Theory of creativity,

that has never been attempted before, and deploy it in a system we called HoningStone.

This model is guided by search process and a metric based on the Bayesian surprise and

a context-specific usefulness metric. This network was applied to the digital collectible

card game Hearthstone, which is one of the most popular of its genre. The challenge was

to generate creative card combos, a set of cards that when played together outpasses

their individual powers. This implies in searching a vast space of possible card combos,

which makes traditional approaches inefficient. Moreover, it is also proposed an emergent

solution, not only to build combos but to generate broad strategies which at first are just

efficient, not creative. In this new scenario, the search space is even larger due to the

number of cards and actions combinations and also due to randomness. So we proposed

a collection of ANNs, fuzzy ARAM, and ARTMAP, that were deployed in an agent we

called Hearthbot, an autonomous agent that plays Hearthstone. Finally, it is proposed a

neural reasoning system, called HARP, able to make Hearthbot also creative and more

efficient in terms of win rate performance. It relies on incorporating The Honing Theory

within the organic learning process of the proposed ANNs, where the associative mode was

implemented as neuron activations and the analytic mode, neuron inhibitions. Moreover,

the agent actions were also not purely random selected when exploring new possibilities,

instead, it used the Bayesian surprise to unveil possibilities not previously attempted.

194 Chapter 12. Conclusions

12.2 General discussion

Although computational intelligence has been widely applied to digital games, in

digital collectible card games there is plenty of room to be explored. In addition to it,

computational creativity in games is in its infancy. HoningStone, a creative system that

applies the Honing theory of creativity to generate creative card combos for Hearthstone

was able to generate combos that are more creative than a greedy randomized algorithm.

As a final remark, although the combos generated by HoningStone are certainly new and

playable from an expert point of view, their efficiency has yet to be proven in real games.

HearthBot performance, as evaluated in Section 11.3 from Chapter 11, shows that

it was able to overcome Metastone MCTS by at least a 20% win rate margin. However,

its performance was unable to defeat the BC-Greedy, that is a simplistic method used

to take decisions. That stems from the fact that HearthBot is just a memory, that stores

action Q-Values, and do not code complex strategies as POMDP paths. In addition, it is

important to note that it can encode actions in a precise way with the proximity metric,

thus it is able to represent compact actions with the spectrum model. Perhaps, its way in

coding actions can be used as a composite operation for other agents, as accomplished for

T-HearthBots variants. When analyzing its ability to create and store information about

the game, it went well considering that in its most precise configuration, reso-90, it was

able to store 1500000 neurons in average and maintain a win rate, for the easiest matches,

near 80%.

By contrast, T-HearthBots displayed an average performance superior to the ones

observed for HearthBot, MCTS and BC-Greedy from Metastone, for the conducted

experiments. This result could have been observed, since T-HearthBots incorporates

temporal learning techniques that enables in representing strategy paths in the simulated

POMDP. As presented on the results chapter, T-HearthBot produces an average win rate

above 90% for the behavioral model and above 60% for the spectrum model. Despite

the behavioral model displayed a better performance, in general, the spectrum model

seems more suitable when playing complex matches, against the BC-Greedy, since it can

learn strategies from scratch. If considering that the behavioral model can generalize

any behavior to be performing in any observed environment, its performance will always

be reasonable. That stems from the fact that, when performing with behaviors, any

selected one will lead into good POMDP states. Conclusively, any learning model based on

12.2. General discussion 195

pre-conceived behaviors can not me trustful to verify the quality of the generated solution.

The observed results for, TU-HearthBot, CTH-HearthBot and CTUH-HearthBot

could be explained as the ability it in represent actions precisely, since the proximity

metric can increase the average win rate obtained when performing. Despite being able

to increase the win rate for the performed experiments, when analyzing the behavior of

all neuron activation functions between simulation epochs, the ART I displayed similar

performance than the proximity metric. This result indicates that the proximity metric,

for the conducted experiment match described in results chapter, can produce slightly

better win rates since its deviation is higher than the ones obtained for the other metrics.

However, using the ART I operation is still useful to categorize environment and achieve

generalization. Nevertheless, it seems that the ART II operation can not deal well with

the spectrum model and can perform better for the behavioral one for the conducted

experiments.

In special, the creative CTH-HearthBot, one of the creative HearthBots, displayed a

better average performance for the win rate convergence tests against the BC-Greedy than

the T-HearthBot. The action categorization mechanism deployed for this bot permits in

increasing the average performance, however the main intention of a creative system is to

generate novel solutions that can affect how its general performance can be optimized. As

presented by the conducted experiments from Appendix A and Chapter 11, the proposed

HARP system displayed the ability that enables it to better explore the search space,

because in a controlled environment, it was able to perform and learn more actions than

the 𝜖-Greedy heuristic during the same amount of epochs.

By contrast to all other T-HearthBots, TR-HearthBot was able to obtain an average

performance near 80% for a behavioral model. However, it was not able to keep its average

performance when acting against the BC-Greedy, since it is a more difficult enemy. The

behavior of the BC-Greedy, with real precise information about every aspect of the game,

prevented the TR-HearthBot in performing well. Another observed aspect of its behavior

was the fact that the action mask can be used with a behavioral model, otherwise a large

amount of bits will need to be used in order to code the action mask.

In terms of attribute behavior analysis, all T-HearthBots performed in a similar

way, where similar attribute count was observed for all of them. Since the total used

amount of simulations was based on the presence of a coefficient of variation near 0, it is

assumed that the behavior attribute counting graphs are a distribution of attributes and

196 Chapter 12. Conclusions

represents the behavior convergence of the algorithms. Furthermore, some T-HearthBots

displayed lower attribute count for the damage dealt and mana spent, and yet obtained

the best win rate performance if compared to Metastone agents and also T-HearthBot.

This result shows that mana managing and damage are important in order to win a game.

In addition, the amount of minions played, hero powers and spells used seems to have

affected decks in which those are crucial to maintain its strategy. The main problem of

those assumptions is that the information obtained for each attribute count graph does

not show the real behavior of the agent, since it can not be said where those attributes

are being spent on. However, this kind of analysis seems useful to see the general behavior

of the agent when playing Hearthstone, where anomalies can be detected for an eventual

debugging in more specific mechanisms of an agent.

Conclusively, the UAM-ANN based T-HearthBots, TU-HearthBot and CTUH-

HearthBot, displayed similar performance, as the CTH-HearthBot, since both obtained

similar win rate response for all conducted experiments expending less neurons in their

action channel. Considering that the proposed UAM-ANN activate areas that it will use

to generate predictions, the search space for each activation was reduced drastically, as

argued in Chapter 11.

The performance of the creative HearthBot, CTUH-HearthBot was the best ob-

served, not only in terms of execution time, but also by neuron usage, considering that

it maintained the average win rate equal or above T-HearthBot. However, the nature of

the deck being used to perform in Hearthstone need to be taken into consideration, since

if it posses a high quantity of actions the UAM-ANN need to be assembled properly in

order to avoid high neuron count for its channel 1 and subsequent ones. It seems that

the proximity metric, alongside with the HARP system and the UAM-ANN can possibly

improve the agent’s performance in general by making it explore better the search space,

spend less space to store neurons, perform in less time and produce the same or better

win rate results than T-HearthBot. Conclusively, the proposed creative HearthBot was

able to subdue its non-creative counterparts, where its architecture can possibly leads to

new ways to represent creativity in machines.

12.3. Drawbacks and future work 197

12.3 Drawbacks and future work

All proposed systems displayed better performance than the analyzed handcrafted

solutions provided by Metastone, where MCTS heuristic represents one of the most used

methods for agent reasoning to this date for environments influenced by uncertainties. A

future search topic of interest is the creation of a mechanism that is able to generate the

UAM-ANN HARP topology in order to optimize better the neuron usage from each of its

cluster channels. A future research topic of interest for the aforementioned aspects would

be the creation of a T-HearthBot, where the HARP is assembled with one UAM-ANN as

discussed in Chapter 10.

With respect to the categorization mechanisms, a future research topic of interest

on that field would be the creation of a system, in which resonance is used separately

on each variable from a received stimulus. By accomplishing that, is expected that the

precise categorization mechanism of the proposed Proximity ANN would be improved.

Furthermore, this way for categorization would also have utility as a composite operation

that could be used on the UAM-ANN and HARP proposals.

A big improvement that can be accomplished for the proposed Hearthstone models,

would be the creation of an action model that shares features. If it was used in one of the

proposed HearthBots, it would be expected to decrease even more the neuron usage rate

and also increasing the ability of them to generalize under uncertainties. Furthermore,

if using a model that shares features, the HARP system can be deployed directly with

the Bayesian surprise, that can handle feature sharing well. Conclusively, another future

research topic of interest would be the proposal of a feature sharing action coding model.

With respect to the Q-Learning, a future research of interest would be related to

find ways to incorporate the same politics of neuron pruning, as presented for the temporal

reactive model. By using such a technique it is expected that the system throw away bad

neurons, with useless Q-Values, thus enhancing the ability of it in learning new and useful

information. In addition, it is also expected from this model that it enhances an agent’s

performance in terms of average win rate for Hearthstone.

12.3.1 Automatic feature extraction for semantic reasoning

A major research topic of interest is the proposal of a system that is able to represent

reality or the game as it is. For example, a computer vision system, as exemplified in

198 Chapter 12. Conclusions

Fig. 12.3.1, if integrated into the proposals from the conducted research the specialist’s

responsibility of creating preconceived models in a way that an ANN can understand will

be reduced. A Convolutional Neural Network could be used to learn image processing filters

and thus classifying objects by just looking at them. The obtained semantic information,

from the classification process, could be used as input for the proposed UAM-ANN and

HARP as discussed on the rest of this section.

In Hearthstone, features should be extracted from Computer Vision mechanisms in

order to represent objects inside the game. The feature extraction mechanism is composed

by a complex series of interconnected processes that represents information from what an

agent is seeing. In this section, the notion on how features are obtained is given, since it is

assumed that the Hearthstone feature model for a higher cognition ART system is given by

a specialist. As showed in Fig. 12.3.1, the process of a higher cognition ART feature vector

extraction starts by receiving the raw sample of a Time Flow in the form of an image.

This image is filtered in order to enhance its borders, thus facilitating the segmentation of

objects into separated small images. As illustrated in Fig. 12.3.1, the segmented image

of the minion card in a Hearthstone battlefield is filtered again with a filter bank, thus

preparing it to extract meaningful information that represents it well.

All meaningful information, from the example depicted in Fig. 12.3.1, is represented

by the three black boxes, called interest points, from the segmented image. All the three

interest points are used for the extraction of feature vectors, where each one has one or

more feature vectors composed by image descriptors. Image descriptors tries to embrace

meaningful invariant information from an interest point. Finally, vectors from all interest

points are composed in a way that can be used by a classifier. As the final step of feature

extraction for a higher cognition system, a classifier classifies the segmented image that

into a class. For instance, the class that represents the battlefield card on the example

showed in Fig. 12.3.1 is a minion with 3 attack and 5 health. This class represents a

high level meaning of the raw signals extracted from the image and is assembled in an

ART input field with a class mapping function. The mapping function will transform the

achieved class and its information into numeric intervals to be used as an ART system’s

input field.

With this proposal the system can become fully autonomous. Furthermore, it is

expected it could learn and performing reasoning through cognition much faster, since the

ART based ANNs are faster than Deep Learning Approaches in many ways, as addressed

12.3. Drawbacks and future work 199

Figure 32 – Feature extraction example, considering vision, for a minion card
on a Hearthstone battlefield.

Source: By the Author.

by (TAN, 2004).

12.3.2 General applicability

Other research topics, besides Hearthstone, could be explored in order to verify the

behavior of the proposals in a variety of domains. An example of domain that can benefit

from the proposed system would be how to solve problems with non-conventional tools.

For example, in a hypothetical situation where a space station, with one astronaut inside,

caught fire and no fire extinguisher is on board, the proposed HARP system could help the

astronaut in generating a solution by novel ways, thus possibly saving his live. It can also

control robots to help doctors in finding novel and useful solutions if a unforeseen occur

during surgery, the search novel solution can be crucial to avoid a fatality. Furthermore,

the proposed system can also be used to generate novel solutions that can be used to

prevent planet earth in being destroyed by climate change. A more aggressive utility for

the proposed solutions is related to the production of machines that can defeat adversaries

during war.

As discussed in this chapter, the proposed solutions from this research can be applied

200 Chapter 12. Conclusions

into a variety of domains. However, ways to incorporate the solutions to cover deficiencies

into the public security, health and education would be also an interesting future research

topic. The solutions found could be used to help dealing with city management, police

forces operations and also to find novel and meaningful ways to deal with government

corruption and how to improve the health and education of a population, thus possibly

enhancing the general quality of life from an underdeveloped country and even smaller

problems from well established ones.

201

BIBLIOGRAPHY

ABDELLARIF, T. et al. Rigorous design of robot software: A formal componente-based
approach. Robotics and autonomous systems, 2012. Citado na página 57.

AGUILAR, W.; PéREZ, R. P. y. Early-creative behavior: the first manifestations of
creativity in a developmental agent. In: International Conference on Computational
Creativity. [S.l.: s.n.], 2017. Citado 5 vezes nas páginas 31, 35, 45, 46, and 48.

AMABILE, T. M. The social psychology of creativity: A consensual assessment technique.
Journal of Personality and Social Psychology, v. 43, n. 5, p. 997–1013, abr. 1982.
Citado 2 vezes nas páginas 43 and 46.

AMORIM, A. et al. Creative flavor pairing: Using rdc metric to generate and assess
ingredients combinations. In: International Conference on Computational
Creativity. [S.l.: s.n.], 2017. Citado 7 vezes nas páginas 31, 35, 39, 45, 46, 47, and 48.

AUGELLO, A. et al. Creative robot dance with variational encoder. In: International
Conference on Computational Creativity. [S.l.: s.n.], 2017. Citado 5 vezes nas
páginas 31, 35, 45, 46, and 47.

BAIER, H.; WINANDS, M. H. M. Mcts-minimax hybrids. IEEE Transactions on
Computational Intelligence and AI in Games, v. 7, n. 2, p. 167–179, June 2015.
ISSN 1943-068X. Citado na página 32.

BALDI, P.; ITTI, L. Of bits and wows: A bayesian theory of surprise with
applications to attention. Neural Netw., Elsevier Science Ltd., Oxford, UK,
UK, v. 23, n. 5, p. 649–666, jun. 2010. ISSN 0893-6080. Disponível em: <http:
//dx.doi.org/10.1016/j.neunet.2009.12.007>. Citado na página 74.

BASILE, P. et al. Solving a complex language game by using knowledge-based word
associations discovery. IEEE Transactions on Computational Intelligence and AI
in Games, v. 8, n. 1, p. 13–26, March 2016. ISSN 1943-068X. Citado na página 32.

BINATO, S.; OLIVEIRA, G. C.; ARAUJO, J. L. A greedy randomized adaptive search
procedure for transmission expansion planning. IEEE Power Engineering Review,
v. 21, n. 4, p. 70–71, April 2001. ISSN 0272-1724. Citado 2 vezes nas páginas 93 and 241.

BLIZZARD, E. 2018. Available at: https://us.battle.net/hearthstone/en/. Disponível em:
<https://us.battle.net/hearthstone/en/>. Citado 2 vezes nas páginas 13 and 123.

BODEN, M. A. The creative mind myths and mechanisms. [S.l.]: Routledge, 2004.
Citado 2 vezes nas páginas 43 and 73.

BODEN, M. A. Creativity and alife. Artificial Life, v. 21, n. 3, p. 354–365, jun. 2015.
Citado 2 vezes nas páginas 44 and 46.

BROOKS, R. A. A robust layered control system for a mobile robot. IEEE Journal of
Robotics and Automation, 1986. Citado na página 57.

BRUNETE, A. et al. A behaviour-based control architecture for heterogeneous modular,
multi-configurable, chained micro-robots. Robotics and autonomous systems, 2012.
Citado na página 57.

http://dx.doi.org/10.1016/j.neunet.2009.12.007
http://dx.doi.org/10.1016/j.neunet.2009.12.007
https://us.battle.net/hearthstone/en/

202 Bibliography

BURSZTEIN, E. 2014. How to appraise hearthstone card values. Disponível em:
<https://www.elie.net/blog/hearthstone/>. Citado 3 vezes nas páginas 48, 49, and 50.

CARPENTER, G. A.; GROSSBERG, S. The art of adaptive pattern recognition by
a self-organizing neural network. Computer, IEEE Computer Society Press, Los
Alamitos, CA, USA, v. 21, n. 3, p. 77–88, mar. 1988. ISSN 0018-9162. Disponível em:
<http://dx.doi.org/10.1109/2.33>. Citado 2 vezes nas páginas 32 and 67.

CARPENTER, G. A.; GROSSBERG, S.; REYNOLDS, J. Artmap: a self-organizing
neural network architecture for fast supervised learning and pattern recognition. In:
Neural Networks, 1991., IJCNN-91-Seattle International Joint Conference
on. [S.l.: s.n.], 1991. i, p. 863–868 vol.1. Citado 5 vezes nas páginas 32, 33, 65, 67, and 108.

CARPENTER, G. A.; GROSSBERG, S.; ROSEN, D. B. Fuzzy art: Fast stable learning
and categorization of analog patterns by an adaptive resonance system. Neural Netw.,
Elsevier Science Ltd., Oxford, UK, UK, v. 4, n. 6, p. 759–771, nov. 1991. ISSN 0893-6080.
Disponível em: <http://dx.doi.org/10.1016/0893-6080(91)90056-B>. Citado 3 vezes nas
páginas 32, 66, and 67.

CELIKKANAT, H.; ORHAN, G.; KALKAN, S. A probabilistic concept web on a
humanoid robot. Autonomous Mental Development, IEEE Transactions on, v. 7,
n. 2, p. 92–106, Junho 2015. ISSN 1943-0604. Citado na página 32.

CHENG, C.-I.; LIU, D.-M. An intelligent clothes search system based on fashion styles.
In: Machine Learning and Cybernetics, 2008 International Conference on. [S.l.:
s.n.], 2008. v. 3, p. 1592–1597. Citado 4 vezes nas páginas 31, 44, 46, and 47.

COLTON, S. et al. Stakeholder groups in computational creativity research and practice.
In: BESOLD, T. R.; SCHORLEMMER, M.; SMAILL, A. (Ed.). Computational
Creativity Research: Towards Creative Machines. Paris: Atlantis Press, 2015. p.
3–36. Citado 2 vezes nas páginas 44 and 46.

DEMILICH. 2016. Disponível em: <http://www.demilich.net/metastone/>. Citado 2
vezes nas páginas 164 and 172.

DIPAOLA, S. Using a contextual focus model for an automatic creativity algorithm
to generate art work. In: SAMSONOVICH, A.; ROBERTSON, P. (Ed.). 5th Annual
International Conference on Biologically Inspired Cognitive Architetures.
[S.l.], 2014. (Procedia Computer Science, v. 41), p. 212–219. ISSN 1877-0509. Citado 5
vezes nas páginas 31, 35, 44, 46, and 47.

FEO, T. A.; RESENDE, M. G. C. Greedy randomized adaptive search procedures.
Journal of Global Optimization, v. 6, n. 2, p. 109–133, 1995. ISSN 1573-2916.
Disponível em: <http://dx.doi.org/10.1007/BF01096763>. Citado 2 vezes nas páginas 93
and 241.

FITZGERALD, T.; GOEL, A.; THOMAZ, A. Human-robot co-creativity: Task transfer on
a spectrum of similarity. International Conference on Computational Creativity,
2017. Citado 4 vezes nas páginas 31, 35, 46, and 48.

GABORA, L. Revenge of the "Neurds": Characterizing Creative Thought in Terms of
the Structure and Dynamics of Memory. Creativity Research Journal, v. 22, n. 1, p.
1–13, jan. 2010. Citado 4 vezes nas páginas 35, 36, 71, and 73.

https://www.elie.net/blog/hearthstone/
http://dx.doi.org/10.1109/2.33
http://dx.doi.org/10.1016/0893-6080(91)90056-B
http://www.demilich.net/metastone/
http://dx.doi.org/10.1007/BF01096763

Bibliography 203

GABORA, L. Revenge of the neurds: characterizing creative thought in terms of the
structure and dynamics of memory. Creativity Research Journal, Taylor & Francis
Group, v. 22, n. 1, p. 1–13, 2010. Citado na página 44.

GóES, L. F. W. et al. Honingstone: Building creative combos with honing theory for a
digital card game. IEEE Transactions on Computational Intelligence and AI in
Games, PP, n. 99, p. 1–1, 2016. ISSN 1943-068X. Citado 2 vezes nas páginas 39 and 123.

GOLDSMAN, D.; NANCE, R. E.; WILSON, J. R. A brief history of simulation revisited.
In: Proceedings of the 2010 Winter Simulation Conference. [S.l.: s.n.], 2010. p.
567–574. ISSN 0891-7736. Citado na página 59.

GRACE, K.; MAHER, M. L. What to expect when you’re expecting: The role
of unexpectedness in computationally evaluating creativity. In: JOSEF STEFAN
INSTITUTE, LJUBLJANA, SLOVENIA. Proceedings of the Fifth International
Conference on Computational Creativity. Ljubljana, Slovenia: Josef Stefan
Institute, Ljubljana, Slovenia, 2014. ISBN 978-961-264-055-2. Disponível em: <http:
//computationalcreativity.net/iccc2014/wp-content/uploads/2014/06//8.2_Grace.pdf>.
Citado na página 73.

GRACE, K. et al. Data-intensive evaluation of design creativity using novelty, value, and
surprise. International Journal of Design Creativity and Innovation, Informa UK
Limited, v. 3, n. 3-4, p. 125–147, ago. 2014. Citado 3 vezes nas páginas 44, 46, and 47.

GROSSBERG, S. The Adaptive Brain. [S.l.]: Elsevier, 1989. I and II. Citado na página
33.

GRUBER, T. R. A translation approach to portable ontology specifications. Knowl.
Acquis., Academic Press Ltd., London, UK, UK, v. 5, n. 2, p. 199–220, jun. 1993. ISSN
1042-8143. Disponível em: <http://dx.doi.org/10.1006/knac.1993.1008>. Citado na
página 216.

GULDNER, J.; UTKIN, V. I.; BAUER, R. A three-layered hierarchical path control
system for mobile robots: Aalgorithm and experiments. Robotics and Autonomous
Systems, 1995. Citado na página 57.

HENRIKSEN, J. O. et al. Implementations of time (panel). In: JONES, D. W.
(Ed.). Proceedings of the 18th Conference on Winter Simulation. New York,
NY, USA: ACM, 1986. (WSC ’86), p. 409–416. ISBN 0-911801-11-1. Disponível em:
<http://doi.acm.org/10.1145/318242.318467>. Citado 2 vezes nas páginas 31 and 58.

JUNIOR, C. R. F. et al. Dependent creativity: A domain independent metric for the
assessment of creative artifacts. In: International Conference on Computational
Creativity. [S.l.: s.n.], 2016. Citado 10 vezes nas páginas 35, 36, 39, 44, 45, 46, 47, 48,
136, and 137.

KIM, H.-S.; CHO, S.-B. Application of interactive genetic algorithm to fashion design.
Engineering Applications of Artificial Intelligence, v. 13, n. 6, p. 635 – 644, 2000.
ISSN 0952-1976. Disponível em: <http://www.sciencedirect.com/science/article/pii/
S0952197600000452>. Citado 5 vezes nas páginas 31, 35, 44, 46, and 47.

KOWALIW, T.; DORIN, A.; MCCORMACK, J. Promoting creative design in interactive
evolutionary computation. IEEE Transactions on Evolutionary Computation,

http://computationalcreativity.net/iccc2014/wp-content/uploads/2014/06//8.2_Grace.pdf
http://computationalcreativity.net/iccc2014/wp-content/uploads/2014/06//8.2_Grace.pdf
http://dx.doi.org/10.1006/knac.1993.1008
http://doi.acm.org/10.1145/318242.318467
http://www.sciencedirect.com/science/article/pii/S0952197600000452
http://www.sciencedirect.com/science/article/pii/S0952197600000452

204 Bibliography

v. 16, n. 4, p. 523–536, AUG 2012. ISSN 1089-778X. Citado 6 vezes nas páginas 31, 35,
44, 46, 47, and 48.

KUNANUSONT, K.; LUCAS, S. M.; PéREZ-LIéBANA, D. General video game
ai: Learning from screen capture. In: 2017 IEEE Congress on Evolutionary
Computation (CEC). [S.l.: s.n.], 2017. p. 2078–2085. Citado 5 vezes nas páginas 33, 45,
51, 52, and 54.

MACEDO, L.; CARDOSO, A. Modeling forms of surprise in an artificial agent. In:
MOORE, J. D.; STENNING, K. (Ed.). Proceedings of the 23rd Annual Conference
of the Cognitive Science Society. Edinburgh: Lawrence Erlbaum Associates, 2001. p.
588–593. Citado 3 vezes nas páginas 43, 46, and 47.

MACEDO, L.; REISENZEIN, R.; CARDOSO, A. Modeling forms of surprise in
artificial agents: empirical and theoretical study of surprise functions. In: FORBUS
DEDRE GENTNER, T. R. K. (Ed.). Proceedings of the 26th Annual Conference
of the Cognitive Science Society. Mahwah: Lawrence Erlbaum, 2004. p. 873–878.
Citado 3 vezes nas páginas 43, 46, and 47.

MATUSZEK, C. et al. An introduction to the syntax and content of cyc. In: Proceedings
of the 2006 AAAI Spring Symposium on Formalizing and Compiling
Background Knowledge and Its Applications to Knowledge Representation
and Question Answering. [S.l.: s.n.], 2006. p. 44–49. Citado na página 32.

MINSKY, M. A Framework for Representing Knowledge. Cambridge, MA, USA,
1974. Citado na página 215.

MIYASHITA, S. et al. Developing game ai agent behaving like human by mixing
reinforcement learning and supervised learning. In: 2017 18th IEEE/ACIS
International Conference on Software Engineering, Artificial Intelligence,
Networking and Parallel/Distributed Computing (SNPD). [S.l.: s.n.], 2017. p.
489–494. Citado 7 vezes nas páginas 31, 32, 33, 45, 51, 52, and 54.

MNIH, V. et al. Human-level control through deep reinforcement learning. Nature,
Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights
Reserved., v. 518, n. 7540, p. 529–533, fev. 2015. ISSN 00280836. Disponível em:
<http://dx.doi.org/10.1038/nature14236>. Citado 3 vezes nas páginas 31, 50, and 54.

ORTONY, A.; PARTRIDGE, D. Surprisingness and expectation failure: what’s the
difference? In: KAMBHAMPATI, S. (Ed.). Proceedings of the Tenth International
Joint Conference on Artificial Intelligence. São Paulo: AAAI Press, 1987. p.
106–108. Citado 2 vezes nas páginas 43 and 46.

PARTRIDGE, D. Input-expectation discrepancy reduction: A ubiquitous mechanism.
In: Proceedings of the 9th International Joint Conference on Artificial
Intelligence - Volume 1. San Francisco: Morgan Kaufmann Publishers Inc., 1985.
(IJCAI’85), p. 267–273. Citado 2 vezes nas páginas 43 and 46.

POUNDSTONE, W. The Recursive Universe: Cosmic Complexity and the
Limits of Scientific Knowledge. [S.l.]: Courier Corporation, 2013. Citado na página
125.

http://dx.doi.org/10.1038/nature14236

Bibliography 205

RAMOS, S. L.; GOéS, L. F. W. Avaliação da percepção de jogadores sobre a criatividade
de combos do jogo digital de cartas hearthstone. In: Brazilian Computing Society
conference on Games (SBGames). [S.l.: s.n.], 2016. Citado na página 39.

RITCHIE, G. Assessing creativity. In: AISB Symposium on artificial intelligence
and creativity in arts and science. York, England: [s.n.], 2001. p. 3–11. Citado 2
vezes nas páginas 34 and 35.

SAFFIOTTI, A. et al. The peis-ecology project: Vision and results. In: Intelligent
Robots and Systems, 2008. IROS 2008. IEEE/RSJ International Conference
on. [S.l.: s.n.], 2008. p. 2329–2335. Citado na página 32.

SCHMIDHUBER, J. Formal theory of creativity, fun, and intrinsic motivation
(1990-2013;2010. Autonomous Mental Development, IEEE Transactions on, v. 2,
n. 3, p. 230–247, Sept 2010. ISSN 1943-0604. Citado na página 35.

SEPHTON, N. et al. Heuristic move pruning in monte carlo tree search for the strategic
card game lords of war. In: 2014 IEEE Conference on Computational Intelligence
and Games. [S.l.: s.n.], 2014. p. 1–7. ISSN 2325-4270. Citado 2 vezes nas páginas 48
and 49.

SILVA, A. R.; GóES, L. F. W. Hearthbot: An autonomous agent based on fuzzy art
adaptive neural networks for the digital collectible card game hearthstone. IEEE
Transactions on Computational Intelligence and AI in Games, PP, n. 99, p. 1–1,
2017. ISSN 1943-068X. Citado na página 39.

SILVER, D. et al. Mastering the game of Go with deep neural networks and tree search.
Nature, Nature Publishing Group, v. 529, n. 7587, p. 484–489, jan. 2016. Citado 7 vezes
nas páginas 31, 32, 33, 49, 50, 54, and 125.

SONDIK, E. J. The optimal control of partially observable markov processes
over the infinite horizon: Discounted costs. Oper. Res., INFORMS, Institute
for Operations Research and the Management Sciences (INFORMS), Linthicum,
Maryland, USA, v. 26, n. 2, p. 282–304, abr. 1978. ISSN 0030-364X. Disponível em:
<http://dx.doi.org/10.1287/opre.26.2.282>. Citado na página 61.

SOWA, J. F. Principles of semantic networks. In: . [S.l.]: Morgan Kaufmann, 1991. Citado
na página 216.

STEEG, M. V. D.; DRUGAN, M. M.; WIERING, M. Temporal difference learning for
the game tic-tac-toe 3d: Applying structure to neural networks. In: Computational
Intelligence, 2015 IEEE Symposium Series on. [S.l.: s.n.], 2015. p. 564–570. Citado
na página 32.

STIENSMEIER-PELSTER, J.; MARTINI, A.; REISENZEIN, R. The role of surprise in
the attribution process. Cognition & Emotion, Taylor & Francis, v. 9, n. 1, p. 5–31,
mar. 1995. Citado 3 vezes nas páginas 43, 46, and 47.

SUGIMOTO, N. et al. Trax solver on zynq with deep q-network. In: Field
Programmable Technology (FPT), 2015 International Conference on. [S.l.:
s.n.], 2015. p. 272–275. Citado na página 32.

http://dx.doi.org/10.1287/opre.26.2.282

206 Bibliography

SZYGENDA, S. A.; HEMMING, C. W.; HEMPHILL, J. M. Time flow mechanisms for
use in digital logic simulation. In: Proceedings of the 5th Conference on Winter
Simulation. New York, NY, USA: ACM, 1971. (WSC ’71), p. 488–495. Disponível em:
<http://doi.acm.org/10.1145/800294.811476>. Citado na página 57.

TAN, A. H. Adaptive resonance associative map: a hierarchical art system for fast stable
associative learning. In: Neural Networks, 1992. IJCNN., International Joint
Conference on. [S.l.: s.n.], 1992. v. 1, p. 860–865 vol.1. Citado 3 vezes nas páginas 66,
67, and 68.

TAN, A.-H. Adaptive resonance associative map. Neural Networks, v. 8, n. 3, p. 437 –
446, 1995. ISSN 0893-6080. Citado 5 vezes nas páginas 32, 65, 66, 67, and 108.

TAN, A.-H. Falcon: a fusion architecture for learning, cognition, and navigation.
In: Neural Networks, 2004. Proceedings. 2004 IEEE International Joint
Conference on. [S.l.: s.n.], 2004. v. 4, p. 3297–3302 vol.4. ISSN 1098-7576. Citado 17
vezes nas páginas 32, 33, 45, 52, 53, 54, 55, 57, 65, 66, 67, 68, 141, 143, 145, 177, and 199.

TAN, A. hwee et al. Integrating temporal difference methods and self-organizing
neural networks for reinforcement learning with delayed evaluative feedback. IEEE
Transactions on Neural Networks, p. 230244, 2008. Citado 9 vezes nas páginas 50,
52, 53, 54, 55, 57, 65, 68, and 172.

TENG, T. H.; TAN, A. H. Fast reinforcement learning under uncertainties with
self-organizing neural networks. In: 2015 IEEE/WIC/ACM International
Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT).
[S.l.: s.n.], 2015. v. 2, p. 51–58. Citado 6 vezes nas páginas 31, 33, 45, 53, 54, and 55.

TENORTH, M.; BEETZ, M. Knowrob: knowledge processing for autonomous personal
robots. In: Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ
International Conference on. [S.l.: s.n.], 2009. p. 4261–4266. Citado na página 32.

TEYTAUD, O.; FLORY, S. Upper confidence trees with short term partial information.
In: . Applications of Evolutionary Computation: EvoApplications 2011:
EvoCOMPLEX, EvoGAMES, EvoIASP, EvoINTELLIGENCE, EvoNUM,
and EvoSTOC, Torino, Italy, April 27-29, 2011, Proceedings, Part I. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2011. p. 153–162. ISBN 978-3-642-20525-5. Citado
na página 48.

TURING, A. M. Computers & thought. In: FEIGENBAUM, E. A.; FELDMAN,
J. (Ed.). Cambridge, MA, USA: MIT Press, 1995. cap. Computing Machinery and
Intelligence, p. 11–35. ISBN 0-262-56092-5. Disponível em: <http://dl.acm.org/citation.
cfm?id=216408.216410>. Citado na página 7.

VARSHNEY, L. et al. Cognition as a part of computational creativity. In: International
Conference on Cognitive Informatics and Cognitive Computing. [S.l.: s.n.],
2013. p. 36–43. Citado 6 vezes nas páginas 31, 35, 44, 46, 47, and 48.

VELDE, F. van der et al. A semantic map for evaluating creativity. In: TOIVONEN
SIMON COLTON, M. C. D. V. H. (Ed.). Proceedings of the Sixth International
Conference on Computational Creativity. Provo: Brigham Young University, 2015.
p. 94–101. Citado 2 vezes nas páginas 44 and 46.

http://doi.acm.org/10.1145/800294.811476
http://dl.acm.org/citation.cfm?id=216408.216410
http://dl.acm.org/citation.cfm?id=216408.216410

Bibliography 207

WANG, D.; TAN, A. H. Creating autonomous adaptive agents in a real-time first-person
shooter computer game. IEEE Transactions on Computational Intelligence and
AI in Games, v. 7, n. 2, p. 123–138, June 2015. ISSN 1943-068X. Citado 13 vezes nas
páginas 32, 57, 65, 67, 68, 78, 81, 85, 108, 145, 146, 147, and 148.

WANG, W.; TAN, A. H.; TEOW, L. N. Semantic memory modeling and memory
interaction in learning agents. IEEE Transactions on Systems, Man, and
Cybernetics: Systems, PP, n. 99, p. 1–14, 2017. ISSN 2168-2216. Citado na página 55.

WARD, C. D.; COWLING, P. I. Monte carlo search applied to card selection in magic:
The gathering. In: 2009 IEEE Symposium on Computational Intelligence and
Games. [S.l.: s.n.], 2009. p. 9–16. ISSN 2325-4270. Citado na página 32.

WARD, C. D.; COWLING, P. I. Monte carlo search applied to card selection in
magic: The gathering. In: Proceedings of the 5th International Conference
on Computational Intelligence and Games. Piscataway, NJ, USA: IEEE
Press, 2009. (CIG’09), p. 9–16. ISBN 978-1-4244-4814-2. Disponível em: <http:
//dl.acm.org/citation.cfm?id=1719293.1719306>. Citado 2 vezes nas páginas 48 and 49.

WARD, C. D.; COWLING, P. I. Monte Carlo search applied to card selection in Magic:
The Gathering. In: Computational Intelligence and Games, 2009. CIG 2009.
IEEE Symposium on. IEEE, 2009. p. 9–16. ISBN 978-1-4244-4814-2. Disponível em:
<http://dx.doi.org/10.1109/cig.2009.5286501>. Citado 2 vezes nas páginas 48 and 49.

WENG, J. Symbolic models and emergent models: A review. IEEE Transactions on
Autonomous Mental Development, v. 4, n. 1, p. 29–53, March 2012. ISSN 1943-0604.
Citado na página 32.

WENG, J. Symbolic models and emergent models: A review. Autonomous Mental
Development, IEEE Transactions on, v. 4, n. 1, p. 29–53, March 2012. ISSN
1943-0604. Citado 3 vezes nas páginas 44, 47, and 57.

WENG, J.; LUCIW, M.; ZHANG, Q. Brain-like emergent temporal processing: Emergent
open states. Autonomous Mental Development, IEEE Transactions on, v. 5, n. 2,
p. 89–116, Junho 2013. ISSN 1943-0604. Citado 2 vezes nas páginas 32 and 57.

YANNAKAKIS, G. N.; TOGELIUS, J. A panorama of artificial and computational
intelligence in games. IEEE Transactions on Computational Intelligence and AI
in Games, v. 7, n. 4, p. 317–335, Dec 2015. ISSN 1943-068X. Citado na página 32.

ZHANG, Y.; YANG, H. An application of radial basis function network and genetic
algorithm to fashion design system. In: Intelligent Systems Design and Engineering
Applications, 2013 Fourth International Conference on. [S.l.: s.n.], 2013. p. 84–88.
Citado 5 vezes nas páginas 31, 35, 44, 46, and 47.

ZHAO, D. et al. Deep reinforcement learning with experience replay based on sarsa. In:
2016 IEEE Symposium Series on Computational Intelligence (SSCI). [S.l.: s.n.],
2016. p. 1–6. Citado 5 vezes nas páginas 32, 33, 45, 52, and 54.

http://dl.acm.org/citation.cfm?id=1719293.1719306
http://dl.acm.org/citation.cfm?id=1719293.1719306
http://dx.doi.org/10.1109/cig.2009.5286501

Appendix

211

APPENDIX A – THE ADAPTIVE RESONANCE THEORY

PRACTICAL EXAMPLE

In this appendix is presented a practical interpretation of the ART in form of

examples. Furthermore, it is also discussed how its aspects can be deployed using data

structures in a reasoning process.

The ART process, illustrated in Figure 33, starts after receiving an external stimulus

image of a sunset from one or more sensors. The received image is analyzed and broken into

understandable symbols called: Round representing the sun’s curvature; Sky representing

the clouds; Yellow representing the sky and sun’s colors; Orange also representing the

sky and sun’s colors. Those symbols triggers a brain mechanism called Coherence Phase

Locking, where all neurons fire simultaneously.

Figure 33 – Adaptive Resonance Theory scheme.

Source: By the Author.

When in Coherence Phase Locking, all neurons activate fragmented memories

already stored in it and represented by the symbols: Round; Orange; Yellow; Atoms; Sky;

Wood; Legs. All those triggered fragmented memories that were fired interacts with the

external stimulus and this process is called Resonance Checking. When the Resonance

Checking is happening, symbols are grouped by similarity and those that does not group

with others are inhibited by an inhibition process. If a symbol is grouped with others,

212 APPENDIX A. The Adaptive Resonance Theory practical example

then they are called resonating symbols. If a resonating symbol is already stored inside

the brain, then it will activate a full memory as can be seen on the right side of Figure

33, where the memories about the sun and the ocean were retrieved. Memories can be

retrieved by receiving incomplete information about an environment. After retrieving

memories, the ART also stores or reinforces the received external stimulus by learning,

assembling new memories.

All symbols, as depicted in Figure 33, are defined in this research as information

formed by a complex network of interconnected neuron clusters, sets of meaningful

informations, assembled with any kind of pattern recognition neural network, or even raw

data obtained from an agent’s sensors. For instance, the example showed in Figure A

shows that the image of the sun can be represented by the symbols Orange, Round, Yellow,

and Atoms, where each one of them was obtained from neuron clusters. The response

or represented stimulus, in a neuron cluster, is coded as a signal that can be used in an

ART system. This way of coding symbols facilitates to create mechanisms for pattern

recognition, thus to perform a Resonance Checking in a digital computer.

Figure 34 – Adaptive Resonance Theory symbols as signals represented by a
complex network of interconnected neurons.

Source: By the Author.

There are two essential problems when dealing with an ART system to simulate a

POMDP to develop strategies to control an agent. Firstly, there is a lack of a standard

structure to store a template of which symbols the system should check resonance with,

in which order and class, secondly, the resonating mechanism retrieves information, but

A.1. Semantics as retrieved memories 213

it does not, represent semantic information in its own structure, thus not representing

adequately a State. To tackle the external stimulus storage problem, any ART established

system organizes its symbols inside Feature Fields, where each field is composed of feature

vectors that represent input signals. For example, Figure 35 shows that the symbols Orange

and Yellow represent colors, thus if the system needs to retrieve memories that are related

to the color present on an environment, then the color of each pixel should be stored in a

field. This mechanism is used inside the Resonance Checking procedure and it recognizes

what expectations should be paired inside the process without a information handling

mechanism.

Figure 35 – Adaptive Resonance Theory signals organized inside representa-
tive fields.

Source: By the Author.

In order simulate a POMDP, fields are used to organize information about each

POMDP component, thus representing states, rewards and actions. On the contrary,

transitions are unrepresented explicitly by any field, because the system needs to be

dynamic and adaptable in a way it does stay unbounded to a predefined Time Flow. This

way of arranging fields is in conformity with a FALCON that works on top of an ART

system.

A.1 Semantics as retrieved memories

In a POMDP, semantics can be seen as a path obtained from the reasoning process

since it represents a sequence of actions that an agent should take in order to trigger a

coherent sequence of events that will maximize its overall reward over time. From the

point of view of an ART system, semantics arises as a consequence of a list of retrieved

interrelated memories as depicted in Figure 36, where the received input signal has activated

214 APPENDIX A. The Adaptive Resonance Theory practical example

the sun and ocean memories as interrelated responses from the Resonance Checking. This

implies on an agent being able to advance semantics not by a POMDP but also in its

internal cognition.

Figure 36 – Adaptive Resonance Theory semantics as retrieved memories.

Source: By the Author.

In order to organize retrieved memories and represent semantics, in this research,

a Semantic Object is used to reference a set of symbols. For instance, in Figure 36, the

image of the sunset with orange clouds is composed from the semantic objects sun and

ocean, where each one of them is composed by symbols.

A.2 Representing information

An ART system can have as many fields it requires and to represent whatever is

necessary following the application’s needs, thus being flexible in representing environments

and simulating processes. Each feature vector inside a field can be composed of continuous

or binary variables. Discrete values are not typically used, since when deploying an ART

system all feature vectors are normalized between [0,1]. Continuous variables are used to

represent stimulus obtained from an environment and binary variables are used to the

represent presence or absence of a semantic object in an environment.

In general, representing variables are not an issue since they can be directly

obtained through sensors. In contrast, if an agent needs to retrieve meaningful semantic

information from retrieved memories or translate previously obtained semantic objects into

feature vectors to be used as signals, then it seems reasonable to portray them coherently.

Organizing information aids in coding a Semantic Object into feature vectors. Furthermore,

it also aids humans in understanding what that information really portrays in a coherent

way, thus facilitating handling it with a computational system.

For instance, in Figure 36, the obtained response is composed by two semantic

A.2. Representing information 215

objects that do need to be combined in order to represent the sunset with clouds as a

third Semantic Object. In order to aid in representing a Semantic Object as a variable,

data structures such as Frames, Semantic Networks and Ontologies can be used, thus

translating semantic objects into input signals inside feature vectors or in translating

activated memories, obtained from the Resonance Checking, into semantic objects that

can be used to label actions that an agent can perform.

A.2.1 Frames

Frames (MINSKY, 1974) are considered in this research as data structures that

store information from symbols about an environment and objects in a game. They are

used to organize any information about a game inside slots. Each slot is used to dictate

a type of variable, as illustrated in Figure 37. The sun is represented by a frame with

three slots, where the slots COLOR1, COLOR2, FORM and ENV. represent semantic

information, of classes. The type of value stored by each slot can vary from string to

numbers and are define a priori. For instance, the value for the COLOR1 slot on the

Sun frame have the string value yellow, while the COLOR1 value for the Sea frame is

represented by a red-green-blue vector that comprises numbers. Furthermore, each slot

can store a reference to other frames, thus representing Semantic Objects and sequence of

events.

Figure 37 – Frame example storing information about the sun and the sea.

Source: By the Author.

216 APPENDIX A. The Adaptive Resonance Theory practical example

A.2.2 Semantic network and Ontologies

Frames can be extracted from Semantic Networks (SOWA, 1991), that represents

semantics through directed or undirected graphs. Those graphs can be directly extracted

from a game’s behavior, event’s sequences and the relation between objects. A graph is

composed of vertices interconnected by edges and defined as 𝐺 = (𝑉, 𝐸), where 𝑉 is the

set of all vertices and 𝐸 a set of edges. A Semantic Network has stereotypes associated

with each edge and represents a semantic relation between vertices, thus representing

meaning.

Semantic networks are at a lower level of representation than frames and they

do not have a mechanism to naturally maintain references to other Semantic Networks,

thus it can be confusing in dealing with sequences of events that are interrelated with

this representation. On the other hand, ontologies (GRUBER, 1993) have no predefined

structure and formal definition, they are structures created on demand. In this research, they

are used to simplify Semantic Networks for specific applications that involve representing

semantics that are present on a State obtained from a Time Flow.

217

APPENDIX B – WIN RATE CONVERGENCE

This appendix presents a complement for the convergence test for all T-HearthBots

when playing against some of the worst observed cases from HearthBot’s evaluation. Some

of the worst cases, when playing against Metastone’s MCTS were: 1) Aggro Shaman; 2)

Tempo Mage; and 3) Face Hunter. Furthermore, in order to test all T-HearthBots against

a Board Control Greedy from Metastone, three more decks were selected: 1) Control

Warrior; 2) Midrange Druid; and 3) Malygos Rogue. The Board Control Greedy decks

were selected based on the worst performance verified when observing how well the MCTS

and BC-Greedy performed against it from the experiment conducted in Section 11.2.

As illustrated in Chart 27, the MCTS displays an overall average win rate of 20%

against all others. When playing against the Shaman deck, the MCTS shows a maximum

win rate performance near 55%. By contrast, when playing against the Zoolock, Hunter,

Druid, Warrior, and Paladin, it displays a win rate performance near 20%. The worst

observed case was observed when playing against the Paladin deck, where the MCTS

received an average win rate near 5%. On the other hand, when using the BC-Greedy, it

displays an overall average win rate near 80%. Nevertheless, the worst observed win rate

for the BC-Greedy was also when playing against the Paladin deck.

Chart 27: Shaman win rate analysis playing against Monte Carlo Tree Search.

Source: By the Author.

The mage deck performance for the MCTS illustrated in Chart 28, displayed a

slightly better performance than the Shaman illustrated in Chart 27. However, it can be

218 APPENDIX B. Win rate convergence

noted that its win rate performance was proportional to the ones observed to the Shaman

deck, where the maximum observed average win rate, of 64%, was obtained when playing

against the Shaman and the worst observed win rate performance, of 9%, was obtained

when playing against the Paladin deck. By contrast, when using the BC-Greedy, it displays

a minimum win rate when playing against the Paladin deck.

Chart 28: Mage win rate analysis playing against Monte Carlo Tree Search.

Source: By the Author.

When analyzing the Hunter playing with the MCTS, illustrated in Chart 29, the

win rate behavior it can be noted that its performance was better than the observed ones

for the Mage and Shaman. It also displays a better performance when playing against the

Zoolock, Hunter, Druid, Warrior, and Paladin, where at a win rate difference near 40% was

observed. In addition, the worst scenario, when playing with Hunter, was also observed

when playing against the Paladin deck. Furthermore, the worst case for the Hunter deck,

when playing with the BC-Greedy, was also obtained playing against the Paladin deck.

As showed in Chart 30, the observed average win rates for the Warrior deck playing

against a BC-Greedy was worst than the ones obtained from all previously analyzed decks.

For the MCTS, it displays a maximum win rate of 13%, against the Hunter deck and

minimum of 5% against the Druid deck. For the BC-Greedy, it displays a maximum win

rate of 60%, against the Rogue deck and a minimum of 8%, against the Shaman deck.

The MCTS playing with the Druid deck, as illustrated in Chart 31, obtained an

overall win rate performance against the BC-Greedy near 10% and for the BC-Greedy

it scored an overall average of 30%. The maximum win rate for the MCTS, of 14%, was

219

Chart 29: Hunter win rate analysis playing against Monte Carlo Tree Search.

Source: By the Author.

Chart 30: Warrior win rate analysis playing against the Board Control Greedy.

Source: By the Author.

220 APPENDIX B. Win rate convergence

observed when playing against the Druid deck. By contrast, the worst win rate of it, as 2%,

was observed when playing against the Priest deck. For the BC-Greedy, the best-observed

performance, of 57%, was obtained when playing against the Druid deck and the worst

case observed, of 4%, was obtained when playing against the Priest deck.

Chart 31: Druid win rate analysis playing against the Board Control Greedy.

Source: By the Author.

The last individual win rate analysis for deck selection was performed for the Rogue

deck. As showed in Chart 32, when playing with the MCTS, it displays an overall average

win rate of 4%. By contrast, when using the BC-Greedy it displays an overall average

win rate of 34%. The minimum observed win rate for the MCTS was 1%, playing against

the Priest deck, and the maximum was observed when playing against the Zoolock deck.

For the BC-Greedy, the maximum observed win rate was 51%, playing against the Rogue

deck, and the minimum observed win rate, of 4%, was obtained when playing against the

Shaman deck.

Based on all aforementioned analysis, the selected decks with their respective enemy

were summarized in Table 8.

B.1 Behavioral T-HearthBots winrate

The win rate convergence for all T-HearthBots, assembled using a behavioral action

model, was evaluated for all the selected heroes described in Table 8. For the Shaman

versus MCTS paladin, as illustrated in Chart 33, T-HearthBot, CTUH-HearthBot, CTH-

B.1. Behavioral T-HearthBots winrate 221

Chart 32: Rogue win rate analysis playing against the Board Control Greedy.

Source: By the Author.

Table 8 – Selected heroes with the respective play style and enemy for all
T-HearthBots experiments.

Hero Play style Enemy Enemy Bot
Tempo Mage Defensive Secret Paladin MCTS
Aggro Shaman Aggressive Secret Paladin MCTS
Face Hunter Aggressive Secret Paladin MCTS
Control Warrior Defensive Aggro Shaman Board Control Greedy
Malygos Rogue Aggressive Aggro Shaman Board Control Greedy
Midrange Druid Hybrid Control Priest Board Control Greedy

HearthBot and TU-HearthBot had displayed a similar performance, near 80% win rate,

after their convergence. By contrast, the TR-HearthBot obtained an average win rate

performance near 65%. The Metastone bots, MCTS and BC-Greedy, obtained an inferior

win rate when playing against the MCTS Paladin, where the MCTS win rate can be

observed as around 5% and the BC-Greedy win rate around 58%. This result shows that

the Shaman deck can achieve high performance when playing with a greedy strategy, since

its behavior is most aggressive, that relies on giving as much damage as it can. However,

the greedy strategy is not sufficient in order to achieve maximum performance, since the

temporal behavior over a Time Flow can influence how good actions will be. Besides

TR-HearthBot received a higher win rate than the BC-Greedy, it seems that the one step

temporal optimization performed by it, during the virtual POMDP optimization, was not

sufficient in order to achieve the same performance as it Q-Learning counterparts.

The summarized behavior of each T-HearthBot when playing with the Shaman

222 APPENDIX B. Win rate convergence

Chart 33: Winrate convergence for Aggro Shaman versus Metastone MCTS
playing with Secret Paladin.

Source: By the Author.

versus MCTS Paladin is showed in Chart 34. As can be seen, T-HearthBot, TU-HearthBot,

CTH-HearthBot and CTUH-HearthBot received similar counting for each observed at-

tribute displayed on the X-axis. The main discrepancy occurred when observing the

behavior of the MCTS and BC-Greedy. For instance it seems that the MCTS tend to

give a high amount of damage if compared to other bots. Besides the observed MCTS

damage seems high enough, allowing to win a game, it can not be guaranteed that it

was used wisely, since the MCTS rely mostly on the generation of random constructions.

Furthermore, the BC-Greedy also displays a higher damage dealt than the other bots and

it also had spent less mana. Giving that the win rate convergence, for the Shaman deck for

all T-HearthBots, as illustrated in Chart 33, was near 80%, it is possible that the damage

dealt and mana spent, if balanced, displays a sign of good performance.

The win rate convergence for the Mage versus MCTS Paladin, as showed in Chart

35, displays a similar performance as the Shaman convergence. The T-HearthBot, TU-

HearthBot, CTH-HearthBot and CTUH-HearthBot received a win rate performance near

90% after their convergence. On the other hand, the MCTS received an average win rate

performance near 10% and the BC-Greedy received a performance near 75%. It seems

that the Mage deck has a better performance than the Shaman one, because it relies in a

hybrid strategy, thus allowing to obtain a better performance in various different ways

and allowing the MCTS and other bots in exploiting its capabilities.

As shown by the behavior analysis, illustrated in Chart 35, the mage Deck relies

B.1. Behavioral T-HearthBots winrate 223

Chart 34: Behavior statistics for Aggro Shaman versus Metastone BC-Greedy
playing with Secret Paladin.

Source: By the Author.

Chart 35: Winrate convergence for Tempo Mage versus Metastone MCTS
playing with Secret Paladin.

Source: By the Author.

224 APPENDIX B. Win rate convergence

most on mana managing, differently from the Shaman deck, since the spent mana for all

T-HearthBots, including the BC-Greedy, was similar. In terms of damage dealt, the MCTS

displays the highest damage done in contrast to the TR-HearthBot that displayed the

lowest damage. For all other T-HearthBots, from T-HearthBot to CTUH-HearthBot, the

damage done for this deck follows a normal distribution. It can be also observed that the

TR-HearthBot tends to not use much of hero power. The observed behavior indicates that

the hero power, when playing with the mage deck, can impact hugely the performance

of it in terms of win rate, since the mage hero power can help in dealing with dangerous

situations, by destroying minions, and also in killing the enemy hero. Furthermore, it

seems that a game can be won by managing the damage dealt efficiently.

Chart 36: Behavior statistics for Tempo Mage versus Metastone BC-Greedy
playing with Secret Paladin.

Source: By the Author.

The selected Hunter deck relies in a face strategy, where the best moves for this

deck are related in dealing direct damage to the enemy hero. The win rate convergence

analysis for this deck, showed in Chart 37, the TU-HearthBot and CTUH-HearthBot

received an average win rate near 80%, by contrast, the T-HearthBot, CTH-HearthBot

and TR-HearthBot received an average win rate performance near 70%. Moreover, the

observed performance for the MCTS was near 15% and for the BC-Greedy was near

53%. The difference in performance, for TU-HearthBot and CTUH-HearthBot between

T-HearthBot and CTH-HearthBot, could be due to the fact that the face strategy rely

mostly in precisely define the target as the enemy hero that the TU-HearthBot and

B.1. Behavioral T-HearthBots winrate 225

CTUH-HearthBot accomplished better. They have accomplished that better, since their

resonance for learning on channel 1, action channel, is configured as a 100% for learning

and also for prediction.

Chart 37: Winrate convergence for Face Hunter versus Metastone MCTS play-
ing with Secret Paladin.

Source: By the Author.

The behavior of the Hunter deck playing against the MCTS Paladin, as illustrated

in Chart 38, shows that the MCTS tends to spend more mana by playing more minions

and spells. The lowest behavior of the MCTS can be explained as the lack of ability of the

bot in deciding efficiently how to expend those resources. Furthermore, as already observed

from the previously presented behaviors, the damage dealt does not correlate directly

with the win rate performance, since both, T-HearthBot variants and the BC-Greedy, had

displayed a low damage dealt, besides that, all T-HearthBots displayed better performance

than the BC-Greedy. In addition, it seems that wisely deciding how to spend mana can

also influence how good the bot will behave. If analyzing the amount of minions played,

can be noted that the MCTS had played the most and for all other bots the quantity of

played minions stayed similar. The best performance bot, CTUH-HearthBot, with the

fastest convergence for the Hunter experiment, had displayed a higher spell usage with a

low damage dealt, same mana spent as other HearthBots and played the least amount

of cards. This behavior could indicate that the converged simulated POMDP, obtained

through the UAM with 100% resonance in channel 1 for the Hunter deck, tends to use

more spells to dominate the battlefield in order to exploit better its face capabilities.

226 APPENDIX B. Win rate convergence

Chart 38: Behavior statistics for Face Hunter versus Metastone MCTS playing
with Secret Paladin.

Source: By the Author.

When playing against the BC-Greedy from Metastone, bots tend to have the worst

performance, since the BC-Greedy knows exactly how the game will behave in at least one

step into the future. As showed in Chart 39, the Rogue deck versus BC-Greedy Shaman

displays an average performance, for T-HearthBot, CTH-HearthBot, TU-HearthBot and

CTUH-HearthBot, near 40%. The TR-HearthBot had the worst performance near 30%

among the other T-HearthBots. This difference in performance could be explained due to

the lack of ability by TR-HearthBot in perceive situations ahead from the analyzed sample

obtained from a Time Flow. Besides receiving a performance near 40%, all T-HearthBots

had performed substantially better than the MCTS, that received an average of 2% win

rate, and the BC-Greedy, that received an average of 8% win rate for this deck. The main

difference from this experiment from the previously presented ones is related to the fact

that the opponent, BC-Greedy, knows exactly how good an action will be one step in to

the future, thus allowing it in overcoming its opponents. It can also be argued that the

BC-Greedy Rogue received a low win rate average since the Shaman deck was observed as

the one with the maximum advantage against the BC-Greedy Rogue, where the expected

behavior was a 50% win rate.

Differently from all observed behaviors when playing against the MCTS, the Rogue

versus BC-Greedy Shaman behavior, as illustrated in Chart 40, shows that a low damage

can, in fact, be able to reduce the performance of the bot, since the MCTS and BC-Greedy

possess the lowest damage counting and lowest performance. It can also be noted that

B.1. Behavioral T-HearthBots winrate 227

Chart 39: Winrate convergence for Malygos Rogue versus Metastone BC-
Greedy playing with Aggro Shaman.

Source: By the Author.

both bots also received the lowest values for all other observed attributes. This behavior

can indicate that the handcrafted bots can not handle well a deterministic heuristic that

have access to precise information from the Hearthstone environment. For all other bots,

its seems that the behavior attributes counting stayed balanced, consequence of using

the same temporal technique for learning. It was expected that TR-HearthBot received

different, smaller or higher, behavior curve than other bots, since its performance was the

worst. However, small variations on its attributes can be noted, specially related to the

damage dealt, and mana spent.

As showed in Chart 41, the Druid versus BC-Greedy Priest shows an average win

rate performance of 25% for the TU-HearthBot and CTUH-HearthBot. Considering that

the Druid deck relies in using precisely its mechanics, related to healing and creating mana

crystals, this performance can be explained as the ability of both bots that allow them

to predict and categorize precise action information. By contrast, the other T-HearthBot

variants received an average win rate performance near 12%, since those bots are not able

to categorize the Druid actions precisely. In addition, the MCTS and BC-Greedy received

the worst average performance near 4%.

The Druid deck main strategy is to build up mana crystals, control the board,

and self heal. As shown by the behavior analysis illustrated in Chart 42, the best bots,

CTUH-HearthBot and TU-HearthBot, have dealt different amounts of damage. Assuming

that the damage was done wisely, selecting in which minion or hero it would better impact

228 APPENDIX B. Win rate convergence

Chart 40: Behavior statistics for Malygos Rogue versus Metastone BC-Greedy
playing with Aggro Shaman.

Source: By the Author.

Chart 41: Winrate convergence for Midrange Druid versus Metastone BC-
Greedy playing with Control Priest.

Source: By the Author.

B.1. Behavioral T-HearthBots winrate 229

the performance of the agent, both performed equally. In addition, their damage was also

equal to the ones observed for other bots. A way in expressing the difference in performance

between T-HearthBots is through the measurement of mana spent and minions played,

since both show discrepancies. On the other hand, the MCTS and BC-Greedy show the

worst performance for this case and displayed a low counting for all attributes, because

they can not handle the enemy heuristic well.

Chart 42: Behavior statistics for Midrange Druid versus Metastone BC-
Greedy playing with Control Priest.

Source: By the Author.

The win rate convergence for the Warrior versus BC-Greedy Shaman is showed in

Chart 43. For this experiment, all T-HearthBot variant, excluding T-HearthBot, received

an average win rate performance near 60% after their convergence. It is important to note

that in this experiment, the convergence of T-HearthBot and CTH-HearthBot follow a

negative slope. This behavior can be explained as the lack of ability from those bots in

learn Q-values correctly, since both possess the highest number of neurons, because they

are not exploiting a tree structure as the TU-HearthBot and CTUH-HearthBot. For this

experiment, the TR-HearthBot received a win rate performance, equal to 1%, that is bellow

the MCTS. Since the Warrior defensive deck relies mostly in building up the battlefield in

order to avoid damage, it seems the TR-HearthBot was not able to optimize the virtual

POMDP considering the future, thus it had not exploited well the deck strategy. The

MCTS received a win rate performance near 5% and the BC-Greedy received a win rate

performance near 10%. Since both are handcrafted methods, this behavior was expected

230 APPENDIX B. Win rate convergence

when playing against the BC-Greedy heuristic from Metastone.

Chart 43: Winrate convergence for Control Warrior versus Metastone BC-
Greedy playing with Aggro Shaman.

Source: By the Author.

The behavior of the TR-HearthBot, as illustrated in Chart 44, received the lowest

counting for all observed attributes on the X-axis. This reflects, explicitly, on its win rate

performance when playing the game, as showed in Chart 43. For all other bots, the counted

behavior attributes follow the same pattern, where all T-HearthBots were observed with

the same counting and the MCTS and BC-Greedy with relative lower ones. In addition,

the Warrior deck strategy, that relies mostly in defending the battlefield and hero with

armor skills and defensive minions, reflects directly on the observed armor gained, and

minions played that received relatively higher counting if compared to the other decks.

It was also observed that this deck allows players in complementing their battlefield by

using weapons, thus a counting for weapon usage is also present on its behavior counting

illustrated in Chart 44.

B.1. Behavioral T-HearthBots winrate 231

Chart 44: Behavior statistics for Control Warrior versus Metastone BC-
Greedy playing with Aggro Shaman.

Source: By the Author.

B.1.1 Spectrum T-HearthBots winrate

The result for the Shaman deck playing against the MCTS Paladin shows, for all

T-HearthBots variants excluding T-HearthBot, a win rate performance near 60% after

convergence. On the other hand, T-HearthBot received a win rate performance near 44%.

It was observed a near 15% performance gain if comparing T-HearthBot with all other

HearthBots. This behavior can be explained as the ability of TU-HearthBot in precisely

categorize and predict actions through its action channel 1. Furthermore, all the creative

HearthBots, CTH-HearthBot and CTUH-HearthBot, achieved the displayed performance

because the proposed HARP allows better exploration of the search space. If considering

the BC-Greedy as a baseline, the creative and UAM HearthBots tend to surpass it for

an average of 4% win rate, since the BC-Greedy scored an average of 56%. On the other

hand, the MCTS scored worst by receiving an average of 6% win rate during all epochs.

The behavior of the Shaman deck showed in Chart 46, for the spectrum model,

differs from the one presented for the behavioral model, since all T-HearthBots show

a higher count for all attributes. It is important to note that, the count of each T-

HearthBot attribute was higher than the observed ones from the BC-Greedy heuristic.

Besides receiving a similar win rate, the BC-Greedy heuristics behavior seems not to be

correlated with the observed behavior for all T-HearthBots. The higher damage count for

all T-HearthBots can be explained as the ability of those bots in exploiting better the

232 APPENDIX B. Win rate convergence

Chart 45: Winrate convergence for Aggro Shaman versus Metastone MCTS
playing with Secret Paladin.

Source: By the Author.

Shaman strategy, since it is mainly based in giving as much damage as it can. Considering

that the performance of T-HearthBots were slightly better than the one observed for the

BC-Greedy, it can be assumed that the temporal exploitation of the POMDP helped

in developing such a strategy, from scratch, that allows it to give more damage, thus

exploiting well the Shaman deck strategy.

Chart 46: Behavior statistics for Aggro Shaman versus Metastone BC-Greedy
playing with Secret Paladin.

Source: By the Author.

As illustrated in Chart 47, the Mage versus MCTS Paladin shows an average win

B.1. Behavioral T-HearthBots winrate 233

rate performance going from 73%, for TU-HearthBot and CTUH-HearthBot, up to 80% for

CTH-HearthBot. By contrast, the T-HearthBot received an average win rate performance

bellow 65%. These results indicate that the CTH-HearthBot is discovering strategies that

are allowing it to develop a better performance. In addition, the CTUH-HearthBot does

not show the same win rate average because it relies in precise categorizations in channel 1,

thus in order to achieve high performance it needs to categorize a high number of actions

during more epochs. Despite CTUH-HearthBot’s observed performance being lower than

the one observed for CTH-HearthBot, it performed better than TU-HearthBot since it can

explore more the environment by using the proposed HARP system. On the other hand,

the MCTS received the worst average performance, 10%, and the BC-Greedy received an

average win rate near 73%, that is a similar performance as observed for TU-HearthBot

and CTUH-HearthBot.

Chart 47: Winrate convergence for Tempo Mage versus Metastone MCTS
playing with Secret Paladin.

Source: By the Author.

The behavior of the Mage versus the MCTS Paladin, as showed in Chart 48,

shows that the three best performance boots, TU-HearthBot, CTH-HearthBot and CTUH-

HearthBot, have dealt the least damage if comparing to tall other bots. In addition, it

seems that the CTH-HearthBot and BC-Greedy have given the least amount of damage,

since they apparently better manage their damage dealing capabilities. The observed

behavior for this deck was different from the Shaman, since its strategy relies in board

control, thus the better performance of it can be related to damage control, mana managing,

234 APPENDIX B. Win rate convergence

cards played and Hero Power usage. The best bot displayed the lowest counting for almost

all attributes, as shown on the X-axis, thus its behavior can be explained as a developed

ability to manage those attributes. By contrast, the worst bot, MCTS, displayed the lowest

counting for each attribute, thus a lower counting is not necessarily a synonym of good

performance.

Chart 48: Behavior statistics for Tempo Mage versus Metastone MCTS play-
ing with Secret Paladin.

Source: By the Author.

When analyzing the win rate convergence of the Hunter versus MCTS Paladin,

illustrated in Chart 49, it can be noted that the creative bots obtained the best performance

again, where the CTH-HearthBot and CTUH-HearthBot obtained an average win rate

performance of 80%. The TR-HearthBot and T-HearthBot obtained an average win

rate performance of 68%. This difference in performance could be explained as the lack

of capability, from the non-creative bots, in exploring the search space on an earlier

exploration stage, before converging. Furthermore, all T-HearthBot variants received a

higher win rate than all analyzed Metastone agents. For instance, the BC-Greedy received

an average win rate of 56% and the MCTS received an average win rate of 17%, which

indicates a performance gain higher than 50%, if comparing all T-HearthBots with the

MCTS, and a performance gain higher than 20%, if comparing with the BC-Greedy.

The Hunter deck displays a behavior similar to the one observed for the Mage

deck, as showed in Chart 50. All the creative HearthBots, CTH-HearthBot and CTUH-

HearthBot, displayed a lower attribute counting for the damage dealt, cards played and

B.1. Behavioral T-HearthBots winrate 235

Chart 49: Winrate convergence for Face Hunter versus Metastone MCTS play-
ing with Secret Paladin.

Source: By the Author.

cards drawn. Those counted attributes represent the ones responsible in guiding the deck’s

strategy, where managing those will possibly increase an agent’s performance. As also

depicted in Chart 50, the attribute that exhibits the highest counting was the damage

dealt, for the BC-Greedy. It could indicate that the BC-Greedy heuristic, as discussed on

the previous presented behavior analysis, tries to give the highest amount of damage as

possible without caring about how much mana it spent.

Chart 50: Behavior statistics for Face Hunter versus Metastone BC-Greedy
playing with Secret Paladin.

Source: By the Author.

236 APPENDIX B. Win rate convergence

A huge loss in performance, for all bots that use the Hunter deck, was observed when

playing against the BC-Greedy Shaman, as illustrated in Chart 51. The CTH-HearthBot

and CTUH-HearthBot had displayed an average win rate performance of 27%, while the

T-HearthBot and TU-HearthBot had displayed an average performance of 20%. An average

performance gain of 7% was observed if comparing the creative bots with non-creative

bots for this experiment. Furthermore, the BC-Greedy displayed an average performance

of 5% and the MCTS displayed an average performance of 2%. The T-HearthBots for this

experiment seems lower than all previous presented ones although they are, in average,

20% higher than the ones obtained for the handcrafted bots from Metastone. Despite the

7% win rate difference, from creative to non-creative bots, a slightly performance loss

was observed between the epoch 100 and 200 for all creative T-HearthBots. The observed

behavior could be explained as a Q-value corruption that eventually happened inside the

network’s neurons along its training.

Chart 51: Winrate convergence for Malygs Rogue versus Metastone BC-
Greedy playing with Aggro Shaman.

Source: By the Author.

The behavior of the Rogue versus BC-Greedy Shaman, as showed in Chart 52, was

different from all observed ones for the spectrum model, since all T-HearthBots displayed

a higher attribute count than the MCTS and BC-Greedy from Metastone. As illustrated

in Chart 52, the MCTS and BC-Greedy received the lowest value for all attributes as

observed also for the other decks. Which respect to the damage dealt, it seems that

all T-HearthBots have converged into a similar solution that exploits a certain level of

B.1. Behavioral T-HearthBots winrate 237

damage that is distributed among the game components. It can not be inferred in which

component all those damage was inflicted on, thus the difference on performance could

have be caused by variations on the developed strategy in each bot. In addition, it seems

that the BC-Greedy bot exploits the Rogue strategy in a way that allows it to spend the

lowest amount of mana as possible, by consequence it plays fewer cards during the game.

This can explain its bad performance, because the Rogue deck relies in playing as much

cards as it can in order to activate their effects properly.

Chart 52: Behavior statistics for Malygos Rogue versus Metastone BC-Greedy
playing with Aggro Shaman.

Source: By the Author.

The Druid versus BC-Greedy Priest win rate performance, showed in Chart 53,

shows a similar behavior than the one observed for the Rogue deck. It was observed an

average win rate performance of 21% for all T-HearthBots proposals excluding T-HearthBot

itself. The major point that can be observed in this experiment is the clear impact of

the proximity metric used to categorize actions, where it is used inside CTH-HearthBot,

TU-HearthBot and CTUH-HearthBot. Due to the large amount of the abilities that the

selected Druid deck can perform, the T-HearthBot performed poorly, 10% win rate average,

since it can not categorize correctly what actions it should perform in order to maximize

its win rate on the virtual POMDP. In addition, the MCTS and BC-Greedy performed in

a similar way, where the MCTS obtained an average win rate performance of 3% and the

BC-Greedy obtained an average of 5%.

As illustrated in Chart 54, when playing with the Druid versus BC-Greedy Priest,

238 APPENDIX B. Win rate convergence

Chart 53: Winrate convergence for Midrange Druid versus Metastone BC-
Greedy playing with Control Priest.

Source: By the Author.

the counted values for all attributes were higher for all T-HearthBots. When looking at the

damage dealt and mana spent, it seems that TU-HearthBot displayed a discrepancy, where

it received the highest damage count and the third lowest mana spent count. This behavior

occurred as mere convergence of the network’s Q-values, where it prioritized giving damage

and spent less mana. This behavior could occur for each HearthBot, however it does not

mean that it represents a better performance. In general, the observed behavior for all

T-HearthBots indicates that, when playing with the Druid deck, healing is important,

since they displayed a slightly higher healing count during the games. By contrast, the

MCTS and BC-Greedy received the lowest counting for each attribute, which indicates

that they are unable to explore well the strategy of the Druid deck when playing against

the BC-Greedy Priest.

The win rate convergence for the Warrior versus BC-Greedy Shaman, showed in

Chart 55, shows that all creative HearthBots displayed an average performance of 50%.

In addition, the TU-HearthBot achieve a similar average performance, of 44%, than its

creative counterparts. Furthermore, it seems that the TU-HearthBot scored a lower average

win rate since it did not explore well during the exploration phase before converging. On

the other hand, the T-HearthBot achieved an average win rate of 30%, what leads to an

average win rate gain, for the creative HearthBots, of 20%. When analyzing the MCTS

and BC-Greedy, it can be seemed that their performance where considerable worst than

all the proposed T-HearthBots, where the MCTS achieved an average win rate of 3%

B.1. Behavioral T-HearthBots winrate 239

Chart 54: Behavior statistics for Midrange Druid versus Metastone BC-
Greedy playing with Control Priest.

Source: By the Author.

and the BC-Greedy achieved an average of 9%. Since the main strategy of the Warrior is

on defending its hero through defensive minions and spells, it was expected to observe

that performance for all the handcrafted bots from Metastone that can not deal well with

temporal information.

Chart 55: Winrate convergence for Control Warrior versus Metastone BC-
Greedy playing with Aggro Shaman.

Source: By the Author.

As illustrated in Chart 56, the Warrior versus BC-Greedy Shaman displayed a

behavior similar to the one observed for the Rogue versus BC-Greedy Shaman. However,

240 APPENDIX B. Win rate convergence

the presented behavior in Chart 56 does not show discrepancies that can be interpreted as a

sign of good or bad performance. All attributes were quite similar for all T-HearthBot, but

it can be seemed that the T-HearthBot has spent less mana and it also played less minions.

This behavior can explain its poor performance in comparison to other T-HearthBots

although all other T-HearthBots played nearly identically. The MCTS and BC-Greedy

displayed in this experiment the lowest performance, as showed in Chart 56 and this

behavior seems to happen recurrently.

Chart 56: Behavior statistics for Control Warrior versus Metastone BC-
Greedy playing with Aggro Shaman.

Source: By the Author.

241

APPENDIX C – PERFORMANCE AND COMPLEXITY ANALYSIS

This appendix presents the performance and complexity analysis only for T-

HearthBots, and addressing the performance for HearthBot, since HoningStone is an

adapted GRASP procedure that was deeply studied by (BINATO; OLIVEIRA; ARAUJO,

2001) and (FEO; RESENDE, 1995) and HearthBot works in a unique way than its temporal

counterparts. The performance of the proposed HearthBot and T-HearthBot systems was

evaluated in terms of milliseconds expended by Metastone to complete a simulation. That

measurement was performed under a 1000 simulations to preserve the estimated coefficient

of variation addressed at Section 11.2. All conducted experiments were accomplished

for the Warrior versus Warrior MCTS match, thus lowering the execution time of the

simulations within one match.

The execution time of all T-HearthBots was compared to T-HearthBot, because it is

the baseline deployed with the original FALCON architecture. In addition, the simulation

time was measured considering the entire simulation, because it allows verifying the

behavior of Metastone or a game itself when the proposed systems are acting inside

of it, thus being more close to reality. In order to check a system, specific expected

performance was opted in performing a time complexity analysis, because it demonstrates

the asymptotical behavior of the agents alone. The performance for HearthBot is not

compared directly with its temporal counterparts because the system is not from the same

nature, in terms of functionality, and it explores and exploits routines work in a different

way than the ones used by T-HearthBots.

As depicted in Chart 57, it shows the execution time for all behavioral HearthBots,

TR-HearthBot displayed an average execution time of 10.82 ms. A similar execution

time, of 11.06 ms, was observed for T-HearthBot, for TU-HearthBot, 13.81 ms, and for

CTUH-HearthBot, 15.06 ms. On the other hand, CTH-HearthBot displayed an average

execution time near 54.45 ms. Nevertheless, it seems that the behavioral model displays

a logarithmic decay in execution time, where almost all bots reached an average of 10

ms. Furthermore, the CTH-HearthBot displayed a different performance than the others.

This unique performance could be explained as the ability of the HARP system in better

exploring the environment, consequently, it will learn more neurons and demand more time

to process all of them. However, by that argument, the CTUH-HearthBot had displayed

the same behavior, what did not happened.

242 APPENDIX C. Performance and complexity analysis

Chart 57: Simulation execution time for the behavioral HearthBots.

Source: By the Author.

There is also an early decay that happened for the behavior model, depicted by

Chart 57, because during that time the system is in exploration mode, thus a large amount

of learning different stimulus at the beginning that is gradually decaying until 𝜖 reaches

0. This decay can also be explained as a convergence of the network with respect to the

total amount of useful POMDP states that it codes, thus when reaching the exploitation

phase it will stop learning and performing operations inside its structure. Nevertheless, no

speedups were observed.

Differently, from the behavioral model, the spectrum one as depicted in Chart 58,

displayed a logarithmic growth behavior, that was expected since the action search space

for the spectrum model is bigger than the one represented by the behavioral model. The

T-HearthBot, for this experiment, displayed an average execution time of 1700.81 ms,

what is a huge performance loss if comparing to the behavioral model. However, it should

be considered that the spectrum model learns from scratch, thus it is expected that it

uses more space, as argued in Section 11.4.6, reducing its performance. In addition, the

TU-HearthBot displayed an average execution time of 1239.11 ms, thus giving a speedup of

1.37 over the baseline. On the other hand, CTH-HearthBot displayed an average execution

time of 363.41 ms, what is a huge performance upgrade, with its speedup equal to 4.68 if

comparing to the baseline. The gain in performance for the CTH-HearthBot can possibly

be due to its ability in economize neurons on early stages of development as argued in

Section 11.4.6. Finally, the CTUH-HearthBot displayed the best performance in terms of

execution time, equal to 26.69 ms, what leads to a speedup of 63.72.

243

Chart 58: Simulation execution time for the spectrum HearthBots.

Source: By the Author.

The proposed T-HearthBot incorporates an ANN that allows to simulate a POMDP

and incorporates the Q-Learning temporal learning technique. The time complexity of

its algorithm, as deployed for this research, is represented in terms of the total amount

of fields 𝑓 , each field size 𝑡 and the total number of neurons 𝑛. In order to represent its

complexity, it is considered that each field have equal size. The T-HearthBot’s algorithm

relies in using the fuzzy ART I, fuzzy ART II and, in its variants, the Proximity neuron

activation functions. The estimated complexity for calculating each neuron activation

function is given as 𝑂(𝑡), where this upper bound was calculated considering operations

performed within a filed. Furthermore, in order to set the activity for each possible field, the

complexity turns into 𝑂(𝑓 × 𝑡). This same complexity is given also to its readout operation.

On the other hand, the perfect mismatch operation, from the FALCON architecture, is

given as 𝑂(1). In addition, the neuron pruning and neuron decay posses a complexity

equal to 𝑂(𝑛), while the action selection, for the reactive model, posses a complexity equal

to 𝑂(𝑓). The main routine, from T-HearthBot’s algorithm, is called prediction, and its

complexity is presented as,

𝑂(𝑛× 𝑓 × 𝑡) + 𝑂(𝑛𝑙𝑜𝑔𝑛) + 𝑂(𝑛) + 𝑂(𝑓 × 𝑡) (60)

where 𝑂(𝑛 × 𝑓 × 𝑡) represents the neuron activation function through the composite

operation for each neuron and each field, 𝑂(𝑛𝑙𝑜𝑔𝑛) represents the sorting algorithm,

provided by default on Java programming language, used to allow in fast selecting neurons

244 APPENDIX C. Performance and complexity analysis

from the resonance checking procedure, 𝑂(𝑛) represents the total number of neurons that

can be accessed from the resonance checking procedure and 𝑂(𝑓 × 𝑡) the readout operation.

On the other hand, HearthBot posses the time complexity of 𝑂(𝑓 × 𝑡) + 𝑂(𝑛𝑙𝑜𝑔𝑛), where

𝑂(𝑓 × 𝑡) is the neuron activation function distributed among the GPU cores and 𝑂(𝑛𝑙𝑜𝑔𝑛)

the search algorithm used to compute the max operation from the resonance checking

output.

The complexity for all T-HearthBots is expressed in terms of total amount of

actions 𝑎 that they can perform. Assuming that, the complexity of the local reasoner is

given as 𝑂(𝑎), since it will seek for the best action one by one. Furthermore, the deployed

Q-Learning methods are divided into three parts, the learning, exploring and exploiting.

The complexity of the learning process is given as,

𝑂(𝑎× 𝑛× 𝑓 × 𝑡) (61)

where 𝑂(𝑎× 𝑛× 𝑓 × 𝑡) represents the action selection for the learning process. Next, the

complexity of the exploring part is given as,

𝑂(𝑛× 𝑓 × 𝑡) + 𝑂(𝑓 × 𝑡) + 𝑂(𝑡) (62)

being 𝑂(𝑛×𝑓 × 𝑡) the prediction process, 𝑂(𝑓 × 𝑡) the set activity and 𝑂(𝑡) the performed

readout for the reward field. On the other hand, the exploiting process complexity is given

as follows,

𝑂(𝑎× 𝑛× 𝑓 × 𝑡) + 𝑂(𝑎× 𝑓 × 𝑡) + 𝑂(𝑎× 𝑡) (63)

where 𝑂(𝑎 × 𝑛 × 𝑓 × 𝑡) represents the complexity for performing predictions for each

possible action, the 𝑂(𝑎× 𝑓 × 𝑡) represents the set activity for each action and 𝑂(𝑎× 𝑡)

the readout for the reward field. Differently, the reactive model uses an action mask and

the neuron dynamics described for the reactive model. The complexity of the reactive

model, assuming the discussed model, is given as,

𝑂(𝑎× 𝑛× 𝑓 × 𝑡) + 𝑂(𝑎× 𝑡) + 𝑂(2× 𝑓 × 𝑡) + 𝑂(2× 𝑡) + 𝑂(2𝑛) (64)

245

where 𝑂(𝑎×𝑛×𝑓 × 𝑡) represents the action selection process through predictions, 𝑂(𝑎× 𝑡)

being the complexity for action selection into a mask composed by 𝑡 variables, 𝑂(2× 𝑓 × 𝑡)

the performed set activity for the evaluated environment, 𝑂(2× 𝑡) being the performed

readouts from all predictions and 𝑂(2𝑛) the pruning and decay process. All evaluated

complexities were calculated without adding the local reasoner term, that is 𝑂(𝑎), since it

is not part of the main routines of the algorithm. Other routines, deployed as 𝑂(1), such

as the neuron reinforcement and neuron erosion, are not considered either.

The time complexity for the Bayesian surprise was calculated in terms of total

amount of elements 𝑏, used to represent all past experiences perceived by the agents, and

the total amount of coded features 𝑣, used by the surprise vectors inside the Expectation

ART. In order to achieve the Bayesian surprise, in the worst case, represented as a Bayesian

surprise matrix, the mean, sum, and deviation of a population must be calculated. The

complexity to calculate such statistics are given as follows,

𝑂(𝑏) + 𝑂(2× 𝑣) + 𝑂(𝑏× 𝑣) (65)

where 𝑂(𝑏) represents the total amount of perceived environments, 𝑂(2× 𝑣) is the cost of

calculating the mean and variance and 𝑂(𝑏× 𝑣) the cost of the algorithm for traversing

the perceived features for each experienced environment. The Bayesian surprise, on the

other hand, is calculated with the cost,

𝑂(𝑣) + 𝑂(𝑏) + 𝑂(2× 𝑣) + 𝑂(𝑏× 𝑣) (66)

where 𝑂(𝑣) is the total amount of features, 𝑂(𝑏) the total amount of observed environments

and 𝑂(2× 𝑣) + 𝑂(𝑏× 𝑣) the complexity for updating the Bayesian surprise matrix. By

contrast, the deployed surprise on the HARP is calculated with the cost of 𝑂(1), since it

directly accesses the action counter for any possible action.

On the other hand, the time complexity for the HARP is the same as the one

described by Equations 61 and 63. However, the exploration phase is performed by the

Expectation ART, thus its complexity is given as,

𝑂(𝑎× 𝑓 × 𝑡) + 𝑂(𝑎× 𝑛× 𝑓 × 𝑡) + 𝑂(𝑡) + 𝑂(𝑎) (67)

246 APPENDIX C. Performance and complexity analysis

where 𝑂(𝑎× 𝑓 × 𝑡) is the set activity function and 𝑂(𝑎× 𝑛× 𝑓 × 𝑡) being the prediction

process, 𝑂(𝑡) represents the readout operation, 𝑂(𝑎) the total amount of actions. The

surprise for each action is calculated through the proposed T-HearthBots surprise with

complexity equal 𝑂(1).

The deployed UAM, with two channels, where channel 1 represents the action field

from a FALCON architecture and channel Y representing the environment-reward mapping,

posses the time complexity for its channel 1 equal to 𝑂(1). That stems from the fact that,

the action channel was configured with 100% resonance, thus it could be deployed as an

indexed table with constant access time. For the channel Y, the time complexity equals

to 𝑂(𝑛× 𝑡), where 𝑛 is the total number of neurons and 𝑡 the total number of variables

used in that channel. By using this configuration, the time complexity was reduced by the

total number of fields. Furthermore, the general path activation complexity for the UAM

is 𝑂(𝑙𝑜𝑔𝑛) since it was assembled as a balanced tree structure.

By contrast to the observed behavior for T-HearthBots, HearthBot possesses the

time complexity equal 𝑂(𝑓 × 𝑡) distributed among all neurons, since it was deployed

into a GPU, and it also possesses 𝑂(𝑛) + 2×𝑂(1) to perform readout on the activated

neuron, where 𝑂(𝑛) is used to find the maximum element from the activation and 𝑂(1) to

perform the set activity and readout operations. That stems from the fact that, HearthBot

calculates the resonance of neurons at the same time it is calculating their activation.

In addition, the performance time of HearthBot when performing is depicted in Chart

59, where it displayed an average of 111.01 ms. Its performance was constant since the

Tesla GPU possesses more than 4000 cores, thus HearthBot is able to handle 4000 neurons

running in parallel for the deployed implementation.

247

Chart 59: Simulation execution time for HearthBot.

Source: By the Author.

249

APPENDIX D – BAYESIAN SURPRISE BEHAVIOR

In this appendix is presented a behavior analysis for the deployed surprise model on

all HARP based HearthBots. This analysis shows a comparison on how the Bayesian surprise

behaves for the HARP system and how it should behave in order to allow compute the

correct surprise considering the proposed Hearthstone models. The experiments conducted

for this test were made with a sample base composed by 800 3-bit binary numbers, where

the base is composed of 8 numbers, each possible permutation for 3-bit representing the

decimal numbers from 0 to 7. In order to train the Bayesian surprise model, the sample

base posses 100 elements of each number. The experiment was conducted by presenting

each sample to the Bayesian surprise model and calculating its surprise while updating

the base at the same time with the presented number. They were organized in order, thus

allowing to see what happens when presenting a new sample to the model. By following

that experiment is expected that the Bayesian surprise calculated during the number

changes, after presenting all 100 samples of the same number, it will display a surprise

peak that represents how novel that sample is according to what was previously known by

the model.

As depicted in Chart 60, the surprise level of each change of sample type shows

a peak, where it represents the surprise of that presented sample type to the Bayesian

surprise model. As can be seen at the start of the sample presentation, for the binary

number 0, the Bayesian surprise response was null since there was nothing on the surprise

base. As the presentation of new samples goes near to 100 the first peak surges since at

that point the surprise base is able to return a calculated surprise based on the previously

learned samples. What happens with the surprise at sample 400 to 800 is that the surprise

base is already filled up with the binary numbers from 0 to 3, thus their peaks are minimal

or they just do not exist although their binary representation is different from all the

previously presented number inside the base. That behavior happens because the previously

learning surprise values obtain bits that are shared between all other numbers that are

presented during sample presentation from 400 to 800. This way of calculating the Bayesian

surprise suits well a model in which individual features are shared between samples.

If considering the Bayesian surprise model as depicted by Chart 60, the model that

codes an agent’s actions need to consider the relationship between actions. For example,

if the action A, from an agent’s possible action list, shares a characteristic with action

250 APPENDIX D. Bayesian surprise behavior

Chart 60: Bayesian surprise behavior for a set of 800 observations.

Source: By the Author.

B than the Bayesian surprise will be able to calculate how similar they are and return a

compatible surprise level for both. As presented in Chapter 9, all the proposed models

code actions as separated individuals, where an action does not relate in any means with

others. That model was coded in that way in order to facilitate how all the proposed

FFSs learn and store information about what action the agent performed during the

simulated POMDP. The main problem of using the Bayesian surprise is the lack of a

way in discerning different actions, as proposed for Hearthstone, in a way that previously

learned actions does not interfere on the calculated surprise for new ones that does not

relate to them. In order to tackle that issue, the Bayesian surprise can also be calculated

without considering its scaling term, shown by Equation 68,

𝑁

2𝜎2
𝑖

(68)

where it represents how much the surprise will be scaled according to the sample space

variation. By removing the scaling term, the Bayesian surprise behaves as depicted by

Chart 61, where each peak can now be seen ranging from 0 to 2.5 and appear to be less

influenced by previously learning samples. In addition, each number seems to display

the same or a similar surprise peak value. Furthermore, the lowest value for each sample

number type, if analyzed progressively, displays a logarithmic growth, which indicates

the influence of the previously learned values on the calculation of subsequent surprise

for each sample type. However, by following that model to calculate the surprise for each

251

HARP T-HearthBot variant, the surprise value will not be trustful yet since it will display

a logarithmic growth according to previously learned samples.

Chart 61: Bayesian surprise behavior for a set of 800 observations without
using a scaling term.

Source: By the Author.

	Dedication
	Acknowledgements
	Epigraph
	Abstract
	RESUMO
	List of Figures
	List of Tables
	List of charts
	Algorithms list
	List of abbreviations and acronyms
	Contents
	Introduction
	Agent reasoning through time
	Computational Creativity for automated systems
	Main objective
	Overview
	Document structure
	Contributions and publications

	Related works and background on agent reasoning and computational creativity systems
	Related work
	Computational Creativity applied to automated systems
	Agent controlling in Digital Collectible Card Games
	Agent controlling with neural networks based on Q-Learning
	Semantic information representation and memory sharing to enhance agent reasoning

	Agent Reasoning
	Digital games
	Reasoning process
	Reasoning through temporal actions
	Partially observable Markov Decision Process
	Strategy as a POMDP path
	Observability and POMDP limitations

	The Adaptive Resonance Theory
	Categorization mechanism
	Perfect Miss Match
	Adaptive Vigilance

	The Honing Theory
	Potentiality State
	Bayesian surprise as a novelty metric
	Bayesian surprise

	Fusion Architecture For Learning COgnition and Navigation
	Reactive Model
	From Sensory To Action
	From Feedback to Learning
	Reinforcement learning
	Neuron Erosion
	Neuron Reinforcement
	Adaptive Cognitive Code Pruning

	Temporal Difference Model
	From sensory to Action with Q-Learning
	Value Estimation
	Bound rules
	From Feedback to Q-Learning

	Creative agent reasoning through adaptive neural networks
	Computational Model of The Honing Theory and The Honing Adaptive Resonance Process
	Conceptual space of vertexes for analytic and associative phases
	Honing Network as unstructured information
	Activation
	The Honing Theory algorithm as a GRASP process
	Discussion

	The Honing Adaptive Resonance process
	The Honing Theory as an ART system
	Contextual focus for action prediction
	Discussion

	Adaptive Neural Networks for Creative Thinking
	Expectation ART: Calculating the Bayesian Surprise with an Adaptive Neural Network
	Surprise vector composition
	Prediction
	Learning

	Proximity Adaptive Neural Network for Precise Matching
	Spectrum coding
	Proximity Based Categorization for an Adaptive Neural Network
	Inhibition method
	Prediction and learning

	Unstructured Area Multi-channel Adaptive Neural Network: Representing Vast Amounts of Information
	Channel structure
	Activation area
	Prediction area
	Prediction
	Neuron Activation functions
	Area inhibition and retrieval
	Learning
	Resonance checking and reset
	Readout

	Deploying the Honing Adaptive Resonance Process in HearthStone agents
	Hearthstone models for an Adaptive Neural Network
	Hearthstone search space size assumptions
	Micro and macro models
	Numeric model for symbols
	Attribute curves model
	Compact environment model
	Full compact action model
	Partial behavioral action model
	Action observability and selection
	Extracting microfeatures for Hearthstone
	Utility value of a State for Hearthstone
	Discussion

	HoningStone and HearthBot systems
	HoningStone
	Creativity Metric for GRASP evaluation

	HearthBot
	Adaptive Neural Network architecture for HearthBot
	HearthBot as a Metastone interface
	HearthBot algorithm

	Temporal HearthBot
	Temporal Reactive Algorithm for T-HearthBot
	Temporal Q-Learning Algorithm for T-HearthBot
	Discussion

	Creative Temporal HearthBot
	Algorithm for CTH-HearthBot

	Creative Temporal UAM HearthBot
	Architecture

	Experimental evaluation, results and conclusions
	Results
	HoningStone evaluation
	Experimental design
	Creative process assessment analysis

	Metastone behavior analysis
	Metastone agents playing against MCTS
	Metastone agents playing against Board Control Greedy
	Deck win rate signature and discussion

	HearthBot evaluation
	Experimental design
	Simulations
	Parameters choice
	Overall performance and discussion
	Overall performance against unobserved decks
	Cognitive code analysis

	T-HearthBots evaluation
	Experimental design
	Simulations
	Parameters choice
	Behavioral T-HearthBots winrate
	Spectrum T-HearthBots winrate
	HARP search space exploration
	General win rate analysis for CTUH-HearthBot
	Overall performance against unobserved decks
	Cognitive code analysis

	Conclusions
	Overview
	General discussion
	Drawbacks and future work
	Automatic feature extraction for semantic reasoning
	General applicability

	Bibliography
	Appendix
	The Adaptive Resonance Theory practical example
	Semantics as retrieved memories
	Representing information
	Frames
	Semantic network and Ontologies

	Win rate convergence
	Behavioral T-HearthBots winrate
	Spectrum T-HearthBots winrate

	Performance and complexity analysis
	Bayesian surprise behavior

