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I. INTRODUCTION

This report presents a solution for a Multi-agent Exploration
[1], [2] problem based on a set of Mixed Strategies heuristi-
cally approximated from a Correlated Equilibrium generated
through a Probability Density Function over viable outcomes.
A video of each experiment is available123. Furthermore,
this case study presents one optimization problem to find a
correlated equilibrium using a distribution over a set of viable
outcomes. Consider the following assumption.

Assumption 1. All robots can reach all frontiers in the Mt.

The aforementioned assumption was made to facilitate
the description of the utility of all outcomes for all robots.
Consider the following problem regarding the Multi-agent
SLAM with Frontier Exploration.

Problem 1 (Two robots and two zones exploration strategies).
Consider the existence of two zones, Zone 1 and Zone 2, and
their respective information gains u′

1 and u′
2. For brevity,

Zone 1 will be called only by the number 1 and Zone 2
will be called only by its number 2. Consider the existence
of two robots that need to solve one instance of a Markov
Game, where the utility

∑
u′
i(a) of an outcome for robot i

is the gain in information for all frontiers f∗ ∈ F of the
zone being visited. Consider that if both robots select the
same zone to explore, their utility will be computed in a
similar fashion to a Congestion Game, or ui ← −ui. Let
N = 2, A1 = (1, 2), A2 = (1, 2), O = A. Find the best-
mixed strategies Π1 and Π2 that approximate the correlated
equilibrium of the game to a probability density function
represented by Υ and maximizes the total expected payoff of
the game in the presence of an environment representation
Mt at the time t.

As a benchmark for this case study, consider the game
described in Table I as an instance of Problem 1.

Robot 2
zone 1 zone 2

Robot 1 zone 1 -2,-2 5, 5
zone 2 6, 5 -3,-3

TABLE I: Two robots game.

where, A1 = (1, 2) and A2 = (1, 2). Set Υ as a loga-
rithmic curve surrounding the best outcome (zone2, zone1)
that spreads to (zone1, zone2). Consider the outcomes

1no equilibrium: https://youtu.be/0xqYxiQCdbA
2equilibrium short: https://youtu.be/i3V1tRCEIRQ
3equilibrium long: https://youtu.be/sF5uBQC0rJ4

(zone1, zone1) and (zone2, zone2) to be conflicting visi-
tation areas. Solve the following optimization problem.

maximize:
f(.) = ω1(−4Π1(a1)Π2(a1) + 10Π1(a1)Π2(a2)

+ 11Π1(a2)Π2(a1)− 6Π1(a2)Π2(a2))

+ ω2ζ(Λ.Υ+ 1)

subject to:
∑

Πi(a) = 1,∀i ∈ N∑
υi = 1, υi ∈ Υ, where G(υi) = 1

Π(a) ≥ 0

A. Experimental Configuration

To solve the aforementioned maximization instance of
Problem 1, the mixed strategy profiles and variables inside Λ
were coded as learnable parameters in a Genetic Algorithm
(GA) with the PyGAD python package. Four different
optimization procedures were performed to obtain different
profiles. Furthermore, two experiments were conducted, where
the first approach Π1Π2 to Λ, where the density of the
N(µ, σ2) is fully centered around µ with low . Differently, the
second experiment uses a higher σ in Λ to achieve exploration-
inclined mixed profiles around the best outcome in the game.

After the optimization process, a mixed strategy profile
matrix was also extracted from the obtained solution as
a function of Π1 and Π2. The best fitness value for the
performed optimization was extracted for each generation of
the GA. The GA runs for 1000 generations with a population
size of 500 and 10 breeding individuals between generations
with uniform crossover. A random mutation scheme was set
to 0.5% for each gene and all variables were set to work
inside the [0, 1] interval.

B. Low Variance Numerical Results

As shown in Tables II and III, the optimization generated
similar mixed strategies for all 4 tests. In contrast, the
correlated equilibrium matrices seem to have converged into
the desired outcome. The behavior portrayed could have
happened since Υ was set with a high variance surrounding
the best possible outcome. In contrast, the mixed strategies
found that exploring zone 1 and zone 2 is the best possible
action profile.

As shown in Fig 1, the optimization converged for all
evaluations to a maximum fitness near 2 which indicates



1 zone 1 zone 2 2 zone 1 zone 2
robot 1 0.0 0.98 robot 1 0.01 0.98
robot 2 0.99 0.002 robot 2 0.99 0.003

3 zone 1 zone 2 4 zone 1 zone 2
robot 1 0.0 0.99 robot 1 0.0 0.98
robot 2 0.99 0.0 robot 2 0.99 0.0

TABLE II: Low variance Λ generated mixed strategies.

1 zone 1 zone 2 2 zone 1 zone 2
zone 1 0.01 0.0 zone 1 0.01 0.0
zone 2 0.98 0.002 zone 2 0.98 0.003

3 zone 1 zone 2 4 zone 1 zone 2
zone 1 0.002 0.0 zone 1 0.01 0.0
zone 2 0.99 0.0 zone 2 0.98 0.0

TABLE III: Extracted correlated equilibrium.

the maximum payoff that can be obtained by approximating
Π1Π2 to Λ. The agent converged near generation 200 for
all tests, which may indicate that the global maximum of
the objective function is easily found due to its slope. This
behavior may help to generate solutions in the real world for
the same problem formulation in an efficient manner.

Fig. 1: Fitness convergence of the best individual for all 4
evaluations with low variance. The x-axis represents each
generation and the y-axis is the fitness for the best individual
from the GA.

C. High Variance Numerical Results

One of the main benefits of the proposed method is the fact
that it does not necessarily converge towards the best possible
equilibrium with a probability of 1. As depicted in Tables IV
and V, when increasing the variance of Λ, the agents will
explore different outcomes. The results show the robots could
explore the same zone. From the point of view of the problem
formulation, this is not the desired behavior since they will
share the same resources. However, it should be mentioned
that the aforementioned behavior happened specifically for
the proposed problem instance. In reality, in a game with

many possible exploration zones, it can be beneficial to be
inclined to explore viable outcomes surrounding the best one
due to local minima and uncertainty.

1 zone 1 zone 2 2 zone 1 zone 2
robot 1 0.26 0.73 robot 1 0.26 0.73
robot 2 0.73 0.26 robot 2 0.73 0.26

3 zone 1 zone 2 4 zone 1 zone 2
robot 1 0.17 0.82 robot 1 0.27 0.72
robot 2 0.83 0.16 robot 2 0.71 0.28

TABLE IV: High variance Λ generated mixed strategies.

1 zone 1 zone 2 2 zone 1 zone 2
zone 1 0.19 0.06 zone 1 0.19 0.07
zone 2 0.54 0.19 zone 2 0.53 0.19

3 zone 1 zone 2 4 zone 1 zone 2
zone 1 0.14 0.02 zone 1 0.19 0.08
zone 2 0.68 0.13 zone 2 0.51 0.2

TABLE V: Extracted correlated equilibrium.

The high variance fitness convergence is presented in
Fig 2. According to the observed optimization behavior, the
agent was able to generate viable solutions that explore its
surroundings and reach a maximum fitness near 0.7. The
obtained fitness is smaller than the ones obtained for a low
variance since the robot will explore solutions that do not
necessarily maximize the overall payoff of the game.

Fig. 2: Fitness convergence of the best individual for all 4
evaluations with high variance. The x-axis represents each
generation and the y-axis is the fitness for the best individual
from the GA.

D. Conclusion

In this case study, it was presented a normal form game
formulated with the method described in Section ?? and used
to generate a set of mixed strategy profiles. The generation of
the strategies was achieved following the desired equilibrium
described by a normal distribution as a function of all mixed



strategy profiles. A solution represents an exploration zone
strategy for all robots that can be computed when their
communication is possible. During all evaluations, the agent
was able to find feasible solutions through a GA (Genetic
Algorithm) for low and high variances applied over the desired
distribution. Despite the fact that it reached smaller fitness
values for the high variance approximation, it portrayed a
convergence time similar to the one depicted by the low
variance model. Since the convergence time seems to be the
same regardless of the variance from Λ, it is possible that a
robot could find any feasible solution in agile time.

Among its advantages, if compared to classic correlated
equilibrium approaches, the presented method allows to
approximate an equilibrium as a function of mixed strat-
egy profiles, which is the desired behavior for real-world
deployment due to the nature of the Multi-agent SLAM
problem. Furthermore, the formulation allows the problem to
always have a solution regardless of the existence of dominant
strategies since it approximates a correlated equilibrium to
any arbitrary PDF (Probability Density Function).
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