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I. INTRODUCTION

This report presents a solution for a Multi-agent Exploration
[1], [2] problem based on a set of Mixed Strategies heuristi-
cally approximated from a Correlated Equilibrium generated
through a Probability Density Function over viable outcomes.
Furthermore, this study is dedicated to the deployment
of a mixed strategy in a real robot simulation using the
Robot Operating System (ROS). ROS was used since it
is a major platform for robot interaction. It is described
as a set of programs that allows communication between
a computer, low-level controllers, and robot peripherals.
Furthermore, it provides network infrastructure for distributed
computing based on publishing and subscribing mechanisms
for real-world deployments or realistic simulations, which
encompass, noise, uncertainties, and failures. Next, the general
deployment method is presented followed by the experimental
configuration.

A. Method

To compute mixed strategies during a real exploration
procedure it is proposed to deploy a robust SLAM algorithm,
with global localization, robust local and global planners, and
pose estimates xt extracted from the fusion of the robot’s
individual maps. A mixed strategy can be formed when the
robots are in the range of communication and can perform
map fusion. The map fusion, on the other hand, is done in
all individual maps and it produces a new representation that
can guide the correlated equilibrium through pose matching.
To decide which zones the robots can explore, or the PDF
(Probability Density Function) Υ, both robots use a hint given
by the global localization performed in the map generated
from the fusion process.

B. Experimental Configuration

For the purpose of the evaluation conducted on the
simulator, assume the following.

Assumption 1. The robots have an already formed mixed
strategy profile. This assumption is done since the main
objective is to verify if all the infrastructure will behave
well guided by a randomized action selection policy over a
mixed strategy distribution.

Assumption 2. For this evaluation, all the robots comply
with the definitions of all mobile robotics sub-problems, where
all uncertainties, errors, and failures are incorporated into
the simulation. Consequently, the subsequent proposals for
environment construction are the hardest possible ones for
any mobile robot-related task.

Considering Assumption 1, one mixed strategy will be
deployed on both robots simultaneously. The main objective of
this evaluation is to check if the robots will be able to explore
the suggested zones with the current stack in a robust manner.
In the rest of this section is presented the infrastructure
developed to validate the mixed strategies deployment.

C. Robots Deployment

To evaluate the deployment, a multi-agent SLAM simu-
lation was developed using ROS (Robot Operating System)
Gazebo simulator. Two Pioneer3AT robots were assembled
for the Multi-agent SLAM problem and equipped with a lidar
sensor. The robot is depicted in Fig. 1 and is described as a
nonholonomic mobile robot.

Fig. 1: Pioneer 3AT robot (left) and its simulation in
Gazebo/ROS (right).

D. Gazebo Environment

On the other hand, the Gazebo simulator allows the
simulation of any arbitrary number of robots which a great
variety of sensors. For the purpose of this research, as depicted
in Fig 2 one environment was developed for evaluation.
The environment is planar and it is composed of several
static boxes that are able to reflect all lidar measurements
consistently. For the purpose of evaluation, it was also
configured as a mirror in the x-axis since it adds a source of
uncertainty to the problem being approached.

E. Robust SLAM

To achieve robust SLAM, a ROS package called Gmapping
was used. This package is able to generate an Occupancy
Grid at specified time steps. Furthermore, it provides a Monte
Carlo Localization method and also incorporates a Pose Graph
correction mechanism. A picture of an Occupancy Grid being
generated from one robot presented in Fig 2 is shown in
Fig 3. It is important to note that the occupancy grid is not
generated at all time steps, in reality, it is updated much less
often due to lack of processing power on real robots or due
to energy consumption restrictions.



Fig. 2: Environment simulation with two Pioneer robots
created using the Gazebo simulator for SLAM evaluations.
The blue regions are lidar beans used to sense the environment
for each robot.

Fig. 3: Occupancy Grid generated for one robot in the
configuration shown by Fig. 2. Each blue point represents
a lidar bean intensity and the reference frame on the left
of the picture is the robot reference frame in relation to the
Occupancy Grid and the robot’s odometry.

F. Robust Navigation Stack

For the purpose of this research, it was to develop a full
navigation stack. It consists of global and local planners
that used MT to generate and execute fail-safe navigation
plans. The local planner encompasses a Potential Field based
navigation which enhanced a Configuration Space obtained
from Mt. On the other hand, the global planner uses the
Configuration Space to create safe global plans that allow
a robot to reach a frontier, follow a strategy, or go to any
location in a reachable area. The representations generated
by both planners are illustrated in Fig 4.

G. Frontier Generation and Selection Mechanism

As depicted in Fig 5. One frontier filtering and selection
mechanism was developed for this research. It is based on
the average frontier positions to generate the set F . However,
since several frontiers can be generated, F is further filtered

Fig. 4: (Left) is the potential field heat map generated by
the created local planner with enhanced information from M .
(Right) is the Configuration Space generated from MT . It
is interesting to note that the Configuration Space has blue
pixels that represent frontiers.

with a k-nearest neighbor-like approach. To select a frontier,
it is used the Euclidean distance to all reachable frontiers,
where a frontier is reachable if a path from the robot’s current
pose xt to a frontier fi ∈ F can be done in time t.

Fig. 5: Detected frontiers in the Configuration Space enhanced
representation as green dots.

H. Merged Map Pose Estimation

To achieve pose estimation when both robots can commu-
nicate, it is proposed to use a map merge module that can be
used for global localization. In this research, the pose of each
robot is set into a Monte Carlo Localization system where
the input of the system is a merged map. The process of pose
estimation for each robot can be seen in Fig 6,
where each vector inside the Occupancy Grid is a particle
that collects information about the environment. The particles
will be filtered until a minimum set of them can be used to
approximate the robot’s current pose xt. The pose approx-
imation should be done in an external representation since
according to the Multi-agent SLAM problem, each robot has
its own map.

I. Qualitative Results

Three experiments were conducted using a setup of two
robots. The starting orientation of both robots was set to π



Fig. 6: Monte Carlo Localization performed in the Fusion of
all the Robots Occupancy Grids.

for both experiments. The robot exposure time was around
5 minutes each. A clearing behavior was deployed in both
robots before starting the SLAM algorithm to remove any
meaningful noise and bias from the initial frontier set. During
the first experiment the mixed strategies Π1 = {0.5, 0.5} and
Π2 = {0.5, 0.5} were used. In the second experiment, the
strategies Π1 = {0.9, 0.1} and Π2 = {0.1, 0.9} was set on
both robots. The third experiment used the same strategies as
experiment two, however with an exposure time of 9 minutes.
A video of each experiment is available123.

As shown in Fig 7, During the execution of the first
experiment with strategies (0.5,0.5), both robots explored
very similar zones and frontiers during the first minutes. This
behavior seems to happen due to the fact that the robots select
the nearest frontier in the zone being visited. Since they have
their own representation of the map, then it is likely that
they will explore the same places without any incentive to do
differently. In addition, the obtained fusion of the randomized
strategy was poor since there were fewer features for pose
matching due to the lack of efficient exploration. On the
other hand, the map obtained with strategies (0.9,0.1) and
(0.1,0.9) portrayed better coverage with a higher information
gain. Another benefit of the equilibrium strategy is the fact
that with more features, the map fusion also performed better.
Consequently, besides a higher information gain, the proposal
was also able to achieve better global maps.

As shown in Fig 8, during the third experiment with
equilibrium and a total exposure time of 9 minutes the robots
were able to explore a broader area. The quality of the map
being created by the fusion module stayed similar to the 5
minute exposure experiment. Despite, being able to create
a meaningful representation with the deployed equilibrium,
deformations appeared near the end of the exposure time.
That stems from the fact that the pose graph optimization
was not able to fully close the visited zones to perform
correction on all poses and adjust the representation. It was
also observed that the robots were almost able to cover

1no equilibrium: https://youtu.be/0xqYxiQCdbA
2equilibrium short: https://youtu.be/i3V1tRCEIRQ
3equilibrium long: https://youtu.be/sF5uBQC0rJ4

Fig. 7: Quality of the generate map fusion obtained from
the two robots. (Left) shows the map generated from a
randomized (0.5,0.5) strategy, whereas (Right) shows the
mixed strategies (0.9,0.1) and (0.1,0.9).

Fig. 8: Quality of the generate map fusion obtained from
the two robots with an equilibrium strategy for a 9 minutes
exposure time.

all of the environment and achieve the maximum possible
information gain for this area.

J. Conclusion

This case study presented the deployment of a mixed
strategy profile generated through the optimization of the
problem instance described in Section ?? in a real robot
simulation using the Robot Operating System (ROS). For the
purpose of this evaluation, a simulation stack was built and
integrated with a SLAM method. Furthermore, a full robust
planning and navigation stack was developed. To evaluate
the feasibility of mixed strategies in real robots, two mixed
strategies were evaluated, where the former is a 50% chance of
exploring each zone and the second represents an equilibrium
state.

Several problems arose from the deployment, which
substantially difficulted the evaluation. For instance, if the
navigation stack is not robust or agile enough, then the robots
would behave in an unpredictable way that may prevent the
accomplishment of critical tasks. Tunning and calibrating all
the solutions and robots were also a big barrier that took
many hours of development. In general, it was observed that
with an equilibrium state strategy both robots were able to
achieve significantly better results even with a single instance
of the planning phase. In future work, the method will be



further refined to be deployed on real robots as also other
forms of equilibrium.

II. GENERAL DISCUSSION

This report presented a method for computing correlated
equilibrium to solve the Multi-agent SLAM problem. Two
case studies were provided where the first regards the gener-
ation of mixed strategies for two-player games whereas the
second regards the deployment of a realistic robot simulation
using the Robot Operating System (ROS). Videos were
provided for each experiment. As it seems, the robots behaved
well during the deployment. The mixed strategy policy was
trivial to be integrated with the robot’s controllers through
ROS since it was basically an action selection mechanism.
Several tunings were performed during the development to
ensure the robustness of the solution. It was interesting to see
that the fusion module was able to obtain better results when
the robots act in an equilibrium state due to the aggregation of
more meaningful features to all individual maps. Furthermore,
the global localization is also portrayed well, however, due
to its probabilistic nature, it demanded the most from the
hardware being used during the simulations. As a future
improvement, a fusion module will be developed from scratch
to explore better performance options and enhance the general
stability of the stack. Real robots will be also used in future
work.
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